Module « scipy.stats »
Signature de la fonction gennorm
def gennorm(*args, **kwds)
Description
gennorm.__doc__
A generalized normal continuous random variable.
As an instance of the `rv_continuous` class, `gennorm` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(beta, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, beta, loc=0, scale=1)
Probability density function.
logpdf(x, beta, loc=0, scale=1)
Log of the probability density function.
cdf(x, beta, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, beta, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, beta, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, beta, loc=0, scale=1)
Log of the survival function.
ppf(q, beta, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, beta, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, beta, loc=0, scale=1)
Non-central moment of order n
stats(beta, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(beta, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(beta,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(beta, loc=0, scale=1)
Median of the distribution.
mean(beta, loc=0, scale=1)
Mean of the distribution.
var(beta, loc=0, scale=1)
Variance of the distribution.
std(beta, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, beta, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
See Also
--------
laplace : Laplace distribution
norm : normal distribution
Notes
-----
The probability density function for `gennorm` is [1]_:
.. math::
f(x, \beta) = \frac{\beta}{2 \Gamma(1/\beta)} \exp(-|x|^\beta)
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`gennorm` takes ``beta`` as a shape parameter for :math:`\beta`.
For :math:`\beta = 1`, it is identical to a Laplace distribution.
For :math:`\beta = 2`, it is identical to a normal distribution
(with ``scale=1/sqrt(2)``).
References
----------
.. [1] "Generalized normal distribution, Version 1",
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
Examples
--------
>>> from scipy.stats import gennorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> beta = 1.3
>>> mean, var, skew, kurt = gennorm.stats(beta, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(gennorm.ppf(0.01, beta),
... gennorm.ppf(0.99, beta), 100)
>>> ax.plot(x, gennorm.pdf(x, beta),
... 'r-', lw=5, alpha=0.6, label='gennorm pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = gennorm(beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = gennorm.ppf([0.001, 0.5, 0.999], beta)
>>> np.allclose([0.001, 0.5, 0.999], gennorm.cdf(vals, beta))
True
Generate random numbers:
>>> r = gennorm.rvs(beta, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :