Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction shapiro
def shapiro(x, *, axis=None, nan_policy='propagate', keepdims=False)
Description
help(scipy.stats.shapiro)
Perform the Shapiro-Wilk test for normality.
The Shapiro-Wilk test tests the null hypothesis that the
data was drawn from a normal distribution.
Parameters
----------
x : array_like
Array of sample data. Must contain at least three observations.
axis : int or None, default: None
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear in a
corresponding element of the output.
If ``None``, the input will be raveled before computing the statistic.
nan_policy : {'propagate', 'omit', 'raise'}
Defines how to handle input NaNs.
- ``propagate``: if a NaN is present in the axis slice (e.g. row) along
which the statistic is computed, the corresponding entry of the output
will be NaN.
- ``omit``: NaNs will be omitted when performing the calculation.
If insufficient data remains in the axis slice along which the
statistic is computed, the corresponding entry of the output will be
NaN.
- ``raise``: if a NaN is present, a ``ValueError`` will be raised.
keepdims : bool, default: False
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
Returns
-------
statistic : float
The test statistic.
p-value : float
The p-value for the hypothesis test.
See Also
--------
:func:`anderson`
The Anderson-Darling test for normality
:func:`kstest`
The Kolmogorov-Smirnov test for goodness of fit.
:ref:`hypothesis_shapiro`
Extended example
Notes
-----
The algorithm used is described in [4]_ but censoring parameters as
described are not implemented. For N > 5000 the W test statistic is
accurate, but the p-value may not be.
Beginning in SciPy 1.9, ``np.matrix`` inputs (not recommended for new
code) are converted to ``np.ndarray`` before the calculation is performed. In
this case, the output will be a scalar or ``np.ndarray`` of appropriate shape
rather than a 2D ``np.matrix``. Similarly, while masked elements of masked
arrays are ignored, the output will be a scalar or ``np.ndarray`` rather than a
masked array with ``mask=False``.
References
----------
.. [1] https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
:doi:`10.18434/M32189`
.. [2] Shapiro, S. S. & Wilk, M.B, "An analysis of variance test for
normality (complete samples)", Biometrika, 1965, Vol. 52,
pp. 591-611, :doi:`10.2307/2333709`
.. [3] Razali, N. M. & Wah, Y. B., "Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests", Journal
of Statistical Modeling and Analytics, 2011, Vol. 2, pp. 21-33.
.. [4] Royston P., "Remark AS R94: A Remark on Algorithm AS 181: The
W-test for Normality", 1995, Applied Statistics, Vol. 44,
:doi:`10.2307/2986146`
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = stats.norm.rvs(loc=5, scale=3, size=100, random_state=rng)
>>> shapiro_test = stats.shapiro(x)
>>> shapiro_test
ShapiroResult(statistic=0.9813305735588074, pvalue=0.16855233907699585)
>>> shapiro_test.statistic
0.9813305735588074
>>> shapiro_test.pvalue
0.16855233907699585
For a more detailed example, see :ref:`hypothesis_shapiro`.
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :