Module « scipy.stats »
Signature de la fonction argus
def argus(*args, **kwds)
Description
argus.__doc__
Argus distribution
As an instance of the `rv_continuous` class, `argus` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(chi, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, chi, loc=0, scale=1)
Probability density function.
logpdf(x, chi, loc=0, scale=1)
Log of the probability density function.
cdf(x, chi, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, chi, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, chi, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, chi, loc=0, scale=1)
Log of the survival function.
ppf(q, chi, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, chi, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, chi, loc=0, scale=1)
Non-central moment of order n
stats(chi, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(chi, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(chi,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(chi, loc=0, scale=1)
Median of the distribution.
mean(chi, loc=0, scale=1)
Mean of the distribution.
var(chi, loc=0, scale=1)
Variance of the distribution.
std(chi, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, chi, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The probability density function for `argus` is:
.. math::
f(x, \chi) = \frac{\chi^3}{\sqrt{2\pi} \Psi(\chi)} x \sqrt{1-x^2}
\exp(-\chi^2 (1 - x^2)/2)
for :math:`0 < x < 1` and :math:`\chi > 0`, where
.. math::
\Psi(\chi) = \Phi(\chi) - \chi \phi(\chi) - 1/2
with :math:`\Phi` and :math:`\phi` being the CDF and PDF of a standard
normal distribution, respectively.
`argus` takes :math:`\chi` as shape a parameter.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``argus.pdf(x, chi, loc, scale)`` is identically
equivalent to ``argus.pdf(y, chi) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
.. versionadded:: 0.19.0
References
----------
.. [1] "ARGUS distribution",
https://en.wikipedia.org/wiki/ARGUS_distribution
Examples
--------
>>> from scipy.stats import argus
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> chi = 1
>>> mean, var, skew, kurt = argus.stats(chi, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(argus.ppf(0.01, chi),
... argus.ppf(0.99, chi), 100)
>>> ax.plot(x, argus.pdf(x, chi),
... 'r-', lw=5, alpha=0.6, label='argus pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = argus(chi)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = argus.ppf([0.001, 0.5, 0.999], chi)
>>> np.allclose([0.001, 0.5, 0.999], argus.cdf(vals, chi))
True
Generate random numbers:
>>> r = argus.rvs(chi, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :