Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.stats »

Fonction theilslopes - module scipy.stats

Signature de la fonction theilslopes

def theilslopes(y, x=None, alpha=0.95) 

Description

theilslopes.__doc__

    Computes the Theil-Sen estimator for a set of points (x, y).

    `theilslopes` implements a method for robust linear regression.  It
    computes the slope as the median of all slopes between paired values.

    Parameters
    ----------
    y : array_like
        Dependent variable.
    x : array_like or None, optional
        Independent variable. If None, use ``arange(len(y))`` instead.
    alpha : float, optional
        Confidence degree between 0 and 1. Default is 95% confidence.
        Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
        interpreted as "find the 90% confidence interval".

    Returns
    -------
    medslope : float
        Theil slope.
    medintercept : float
        Intercept of the Theil line, as ``median(y) - medslope*median(x)``.
    lo_slope : float
        Lower bound of the confidence interval on `medslope`.
    up_slope : float
        Upper bound of the confidence interval on `medslope`.

    See also
    --------
    siegelslopes : a similar technique using repeated medians

    Notes
    -----
    The implementation of `theilslopes` follows [1]_. The intercept is
    not defined in [1]_, and here it is defined as ``median(y) -
    medslope*median(x)``, which is given in [3]_. Other definitions of
    the intercept exist in the literature. A confidence interval for
    the intercept is not given as this question is not addressed in
    [1]_.

    References
    ----------
    .. [1] P.K. Sen, "Estimates of the regression coefficient based on
           Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968.
    .. [2] H. Theil, "A rank-invariant method of linear and polynomial
           regression analysis I, II and III",  Nederl. Akad. Wetensch., Proc.
           53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950.
    .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed.,
           John Wiley and Sons, New York, pp. 493.

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    >>> x = np.linspace(-5, 5, num=150)
    >>> y = x + np.random.normal(size=x.size)
    >>> y[11:15] += 10  # add outliers
    >>> y[-5:] -= 7

    Compute the slope, intercept and 90% confidence interval.  For comparison,
    also compute the least-squares fit with `linregress`:

    >>> res = stats.theilslopes(y, x, 0.90)
    >>> lsq_res = stats.linregress(x, y)

    Plot the results. The Theil-Sen regression line is shown in red, with the
    dashed red lines illustrating the confidence interval of the slope (note
    that the dashed red lines are not the confidence interval of the regression
    as the confidence interval of the intercept is not included). The green
    line shows the least-squares fit for comparison.

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.plot(x, y, 'b.')
    >>> ax.plot(x, res[1] + res[0] * x, 'r-')
    >>> ax.plot(x, res[1] + res[2] * x, 'r--')
    >>> ax.plot(x, res[1] + res[3] * x, 'r--')
    >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
    >>> plt.show()