Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction special_ortho_group
def special_ortho_group(dim=None, seed=None)
Description
help(scipy.stats.special_ortho_group)
A Special Orthogonal matrix (SO(N)) random variable.
Return a random rotation matrix, drawn from the Haar distribution
(the only uniform distribution on SO(N)) with a determinant of +1.
The `dim` keyword specifies the dimension N.
Methods
-------
rvs(dim=None, size=1, random_state=None)
Draw random samples from SO(N).
Parameters
----------
dim : scalar
Dimension of matrices
seed : {None, int, np.random.RandomState, np.random.Generator}, optional
Used for drawing random variates.
If `seed` is `None`, the `~np.random.RandomState` singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used, seeded
with seed.
If `seed` is already a ``RandomState`` or ``Generator`` instance,
then that object is used.
Default is `None`.
Notes
-----
This class is wrapping the random_rot code from the MDP Toolkit,
https://github.com/mdp-toolkit/mdp-toolkit
Return a random rotation matrix, drawn from the Haar distribution
(the only uniform distribution on SO(N)).
The algorithm is described in the paper
Stewart, G.W., "The efficient generation of random orthogonal
matrices with an application to condition estimators", SIAM Journal
on Numerical Analysis, 17(3), pp. 403-409, 1980.
For more information see
https://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization
See also the similar `ortho_group`. For a random rotation in three
dimensions, see `scipy.spatial.transform.Rotation.random`.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import special_ortho_group
>>> x = special_ortho_group.rvs(3)
>>> np.dot(x, x.T)
array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16],
[ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
[ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])
>>> import scipy.linalg
>>> scipy.linalg.det(x)
1.0
This generates one random matrix from SO(3). It is orthogonal and
has a determinant of 1.
Alternatively, the object may be called (as a function) to fix the `dim`
parameter, returning a "frozen" special_ortho_group random variable:
>>> rv = special_ortho_group(5)
>>> # Frozen object with the same methods but holding the
>>> # dimension parameter fixed.
See Also
--------
ortho_group, scipy.spatial.transform.Rotation.random
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :