Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.stats »

Fonction bootstrap - module scipy.stats

Signature de la fonction bootstrap

def bootstrap(data, statistic, *, vectorized=True, paired=False, axis=0, confidence_level=0.95, n_resamples=9999, batch=None, method='BCa', random_state=None) 

Description

bootstrap.__doc__

    Compute a two-sided bootstrap confidence interval of a statistic.

    When `method` is ``'percentile'``, a bootstrap confidence interval is
    computed according to the following procedure.

    1. Resample the data: for each sample in `data` and for each of
       `n_resamples`, take a random sample of the original sample
       (with replacement) of the same size as the original sample.

    2. Compute the bootstrap distribution of the statistic: for each set of
       resamples, compute the test statistic.

    3. Determine the confidence interval: find the interval of the bootstrap
       distribution that is

       - symmetric about the median and
       - contains `confidence_level` of the resampled statistic values.

    While the ``'percentile'`` method is the most intuitive, it is rarely
    used in practice. Two more common methods are available, ``'basic'``
    ('reverse percentile') and ``'BCa'`` ('bias-corrected and accelerated');
    they differ in how step 3 is performed.

    If the samples in `data` are  taken at random from their respective
    distributions :math:`n` times, the confidence interval returned by
    `bootstrap` will contain the true value of the statistic for those
    distributions approximately `confidence_level`:math:`\, \times \, n` times.

    Parameters
    ----------
    data : sequence of array-like
         Each element of data is a sample from an underlying distribution.
    statistic : callable
        Statistic for which the confidence interval is to be calculated.
        `statistic` must be a callable that accepts ``len(data)`` samples
        as separate arguments and returns the resulting statistic.
        If `vectorized` is set ``True``,
        `statistic` must also accept a keyword argument `axis` and be
        vectorized to compute the statistic along the provided `axis`.
    vectorized : bool, default: ``True``
        If `vectorized` is set ``False``, `statistic` will not be passed
        keyword argument `axis`, and is assumed to calculate the statistic
        only for 1D samples.
    paired : bool, default: ``False``
        Whether the statistic treats corresponding elements of the samples
        in `data` as paired.
    axis : int, default: ``0``
        The axis of the samples in `data` along which the `statistic` is
        calculated.
    confidence_level : float, default: ``0.95``
        The confidence level of the confidence interval.
    n_resamples : int, default: ``9999``
        The number of resamples performed to form the bootstrap distribution
        of the statistic.
    batch : int, optional
        The number of resamples to process in each vectorized call to
        `statistic`. Memory usage is O(`batch`*``n``), where ``n`` is the
        sample size. Default is ``None``, in which case ``batch = n_resamples``
        (or ``batch = max(n_resamples, n)`` for ``method='BCa'``).
    method : {'percentile', 'basic', 'bca'}, default: ``'BCa'``
        Whether to return the 'percentile' bootstrap confidence interval
        (``'percentile'``), the 'reverse' or the bias-corrected and accelerated
        bootstrap confidence interval (``'BCa'``).
        Note that only ``'percentile'`` and ``'basic'`` support multi-sample
        statistics at this time.
    random_state : {None, int, `numpy.random.Generator`,
                    `numpy.random.RandomState`}, optional

        If `seed` is ``None`` (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.

        Pseudorandom number generator state used to generate resamples.

    Returns
    -------
    res : BootstrapResult
        An object with attributes:

        confidence_interval : ConfidenceInterval
            The bootstrap confidence interval as an instance of
            `collections.namedtuple` with attributes `low` and `high`.
        standard_error : float or ndarray
            The bootstrap standard error, that is, the sample standard
            deviation of the bootstrap distribution

    References
    ----------
    .. [1] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap,
       Chapman & Hall/CRC, Boca Raton, FL, USA (1993)
    .. [2] Nathaniel E. Helwig, "Bootstrap Confidence Intervals",
       http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf
    .. [3] Bootstrapping (statistics), Wikipedia,
       https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Examples
    --------
    Suppose we have sampled data from an unknown distribution.

    >>> import numpy as np
    >>> rng = np.random.default_rng()
    >>> from scipy.stats import norm
    >>> dist = norm(loc=2, scale=4)  # our "unknown" distribution
    >>> data = dist.rvs(size=100, random_state=rng)

    We are interested int the standard deviation of the distribution.

    >>> std_true = dist.std()      # the true value of the statistic
    >>> print(std_true)
    4.0
    >>> std_sample = np.std(data)  # the sample statistic
    >>> print(std_sample)
    3.9460644295563863

    We can calculate a 90% confidence interval of the statistic using
    `bootstrap`.

    >>> from scipy.stats import bootstrap
    >>> data = (data,)  # samples must be in a sequence
    >>> res = bootstrap(data, np.std, confidence_level=0.9,
    ...                 random_state=rng)
    >>> print(res.confidence_interval)
    ConfidenceInterval(low=3.57655333533867, high=4.382043696342881)

    If we sample from the distribution 1000 times and form a bootstrap
    confidence interval for each sample, the confidence interval
    contains the true value of the statistic approximately 900 times.

    >>> n_trials = 1000
    >>> ci_contains_true_std = 0
    >>> for i in range(n_trials):
    ...    data = (dist.rvs(size=100, random_state=rng),)
    ...    ci = bootstrap(data, np.std, confidence_level=0.9, n_resamples=1000,
    ...                   random_state=rng).confidence_interval
    ...    if ci[0] < std_true < ci[1]:
    ...        ci_contains_true_std += 1
    >>> print(ci_contains_true_std)
    875

    Rather than writing a loop, we can also determine the confidence intervals
    for all 1000 samples at once.

    >>> data = (dist.rvs(size=(n_trials, 100), random_state=rng),)
    >>> res = bootstrap(data, np.std, axis=-1, confidence_level=0.9,
    ...                 n_resamples=1000, random_state=rng)
    >>> ci_l, ci_u = res.confidence_interval

    Here, `ci_l` and `ci_u` contain the confidence interval for each of the
    ``n_trials = 1000`` samples.

    >>> print(ci_l[995:])
    [3.77729695 3.75090233 3.45829131 3.34078217 3.48072829]
    >>> print(ci_u[995:])
    [4.88316666 4.86924034 4.32032996 4.2822427  4.59360598]

    And again, approximately 90% contain the true value, ``std_true = 4``.

    >>> print(np.sum((ci_l < std_true) & (std_true < ci_u)))
    900

    `bootstrap` can also be used to estimate confidence intervals of
    multi-sample statistics, including those calculated by hypothesis
    tests. `scipy.stats.mood` perform's Mood's test for equal scale parameters,
    and it returns two outputs: a statistic, and a p-value. To get a
    confidence interval for the test statistic, we first wrap
    `scipy.stats.mood` in a function that accepts two sample arguments,
    accepts an `axis` keyword argument, and returns only the statistic.

    >>> from scipy.stats import mood
    >>> def my_statistic(sample1, sample2, axis):
    ...     statistic, _ = mood(sample1, sample2, axis=-1)
    ...     return statistic

    Here, we use the 'percentile' method with the default 95% confidence level.

    >>> sample1 = norm.rvs(scale=1, size=100, random_state=rng)
    >>> sample2 = norm.rvs(scale=2, size=100, random_state=rng)
    >>> data = (sample1, sample2)
    >>> res = bootstrap(data, my_statistic, method='basic', random_state=rng)
    >>> print(mood(sample1, sample2)[0])  # element 0 is the statistic
    -5.521109549096542
    >>> print(res.confidence_interval)
    ConfidenceInterval(low=-7.255994487314675, high=-4.016202624747605)

    The bootstrap estimate of the standard error is also available.

    >>> print(res.standard_error)
    0.8344963846318795

    Paired-sample statistics work, too. For example, consider the Pearson
    correlation coefficient.

    >>> from scipy.stats import pearsonr
    >>> n = 100
    >>> x = np.linspace(0, 10, n)
    >>> y = x + rng.uniform(size=n)
    >>> print(pearsonr(x, y)[0])  # element 0 is the statistic
    0.9962357936065914

    We wrap `pearsonr` so that it returns only the statistic.

    >>> def my_statistic(x, y):
    ...     return pearsonr(x, y)[0]

    We call `bootstrap` using ``paired=True``.
    Also, since ``my_statistic`` isn't vectorized to calculate the statistic
    along a given axis, we pass in ``vectorized=False``.

    >>> res = bootstrap((x, y), my_statistic, vectorized=False, paired=True,
    ...                 random_state=rng)
    >>> print(res.confidence_interval)
    ConfidenceInterval(low=0.9950085825848624, high=0.9971212407917498)