Module « scipy.stats »
Signature de la fonction weibull_min
def weibull_min(*args, **kwds)
Description
weibull_min.__doc__
Weibull minimum continuous random variable.
The Weibull Minimum Extreme Value distribution, from extreme value theory
(Fisher-Gnedenko theorem), is also often simply called the Weibull
distribution. It arises as the limiting distribution of the rescaled
minimum of iid random variables.
As an instance of the `rv_continuous` class, `weibull_min` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(c, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, c, loc=0, scale=1)
Probability density function.
logpdf(x, c, loc=0, scale=1)
Log of the probability density function.
cdf(x, c, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, c, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, c, loc=0, scale=1)
Log of the survival function.
ppf(q, c, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, c, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, c, loc=0, scale=1)
Non-central moment of order n
stats(c, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(c, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(c, loc=0, scale=1)
Median of the distribution.
mean(c, loc=0, scale=1)
Mean of the distribution.
var(c, loc=0, scale=1)
Variance of the distribution.
std(c, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
See Also
--------
weibull_max, numpy.random.Generator.weibull, exponweib
Notes
-----
The probability density function for `weibull_min` is:
.. math::
f(x, c) = c x^{c-1} \exp(-x^c)
for :math:`x > 0`, :math:`c > 0`.
`weibull_min` takes ``c`` as a shape parameter for :math:`c`.
(named :math:`k` in Wikipedia article and :math:`a` in
``numpy.random.weibull``). Special shape values are :math:`c=1` and
:math:`c=2` where Weibull distribution reduces to the `expon` and
`rayleigh` distributions respectively.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``weibull_min.pdf(x, c, loc, scale)`` is identically
equivalent to ``weibull_min.pdf(y, c) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
References
----------
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Fisher-Tippett-Gnedenko_theorem
Examples
--------
>>> from scipy.stats import weibull_min
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> c = 1.79
>>> mean, var, skew, kurt = weibull_min.stats(c, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(weibull_min.ppf(0.01, c),
... weibull_min.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_min.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='weibull_min pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = weibull_min(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = weibull_min.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_min.cdf(vals, c))
True
Generate random numbers:
>>> r = weibull_min.rvs(c, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :