Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.stats »

Fonction binom_test - module scipy.stats

Signature de la fonction binom_test

def binom_test(x, n=None, p=0.5, alternative='two-sided') 

Description

binom_test.__doc__

Perform a test that the probability of success is p.

    Note: `binom_test` is deprecated; it is recommended that `binomtest`
    be used instead.

    This is an exact, two-sided test of the null hypothesis
    that the probability of success in a Bernoulli experiment
    is `p`.

    Parameters
    ----------
    x : int or array_like
        The number of successes, or if x has length 2, it is the
        number of successes and the number of failures.
    n : int
        The number of trials.  This is ignored if x gives both the
        number of successes and failures.
    p : float, optional
        The hypothesized probability of success.  ``0 <= p <= 1``. The
        default value is ``p = 0.5``.
    alternative : {'two-sided', 'greater', 'less'}, optional
        Indicates the alternative hypothesis. The default value is
        'two-sided'.

    Returns
    -------
    p-value : float
        The p-value of the hypothesis test.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Binomial_test

    Examples
    --------
    >>> from scipy import stats

    A car manufacturer claims that no more than 10% of their cars are unsafe.
    15 cars are inspected for safety, 3 were found to be unsafe. Test the
    manufacturer's claim:

    >>> stats.binom_test(3, n=15, p=0.1, alternative='greater')
    0.18406106910639114

    The null hypothesis cannot be rejected at the 5% level of significance
    because the returned p-value is greater than the critical value of 5%.