Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.stats »

Fonction obrientransform - module scipy.stats

Signature de la fonction obrientransform

def obrientransform(*args) 

Description

obrientransform.__doc__

Compute the O'Brien transform on input data (any number of arrays).

    Used to test for homogeneity of variance prior to running one-way stats.
    Each array in ``*args`` is one level of a factor.
    If `f_oneway` is run on the transformed data and found significant,
    the variances are unequal.  From Maxwell and Delaney [1]_, p.112.

    Parameters
    ----------
    args : tuple of array_like
        Any number of arrays.

    Returns
    -------
    obrientransform : ndarray
        Transformed data for use in an ANOVA.  The first dimension
        of the result corresponds to the sequence of transformed
        arrays.  If the arrays given are all 1-D of the same length,
        the return value is a 2-D array; otherwise it is a 1-D array
        of type object, with each element being an ndarray.

    References
    ----------
    .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
           Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.

    Examples
    --------
    We'll test the following data sets for differences in their variance.

    >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
    >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]

    Apply the O'Brien transform to the data.

    >>> from scipy.stats import obrientransform
    >>> tx, ty = obrientransform(x, y)

    Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
    transformed data.

    >>> from scipy.stats import f_oneway
    >>> F, p = f_oneway(tx, ty)
    >>> p
    0.1314139477040335

    If we require that ``p < 0.05`` for significance, we cannot conclude
    that the variances are different.