Module « scipy.stats »
Signature de la fonction ncf
def ncf(*args, **kwds)
Description
ncf.__doc__
A non-central F distribution continuous random variable.
As an instance of the `rv_continuous` class, `ncf` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(dfn, dfd, nc, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, dfn, dfd, nc, loc=0, scale=1)
Probability density function.
logpdf(x, dfn, dfd, nc, loc=0, scale=1)
Log of the probability density function.
cdf(x, dfn, dfd, nc, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, dfn, dfd, nc, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, dfn, dfd, nc, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, dfn, dfd, nc, loc=0, scale=1)
Log of the survival function.
ppf(q, dfn, dfd, nc, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, dfn, dfd, nc, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, dfn, dfd, nc, loc=0, scale=1)
Non-central moment of order n
stats(dfn, dfd, nc, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(dfn, dfd, nc, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(dfn, dfd, nc), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(dfn, dfd, nc, loc=0, scale=1)
Median of the distribution.
mean(dfn, dfd, nc, loc=0, scale=1)
Mean of the distribution.
var(dfn, dfd, nc, loc=0, scale=1)
Variance of the distribution.
std(dfn, dfd, nc, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, dfn, dfd, nc, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
See Also
--------
scipy.stats.f : Fisher distribution
Notes
-----
The probability density function for `ncf` is:
.. math::
f(x, n_1, n_2, \lambda) =
\exp\left(\frac{\lambda}{2} +
\lambda n_1 \frac{x}{2(n_1 x + n_2)}
\right)
n_1^{n_1/2} n_2^{n_2/2} x^{n_1/2 - 1} \\
(n_2 + n_1 x)^{-(n_1 + n_2)/2}
\gamma(n_1/2) \gamma(1 + n_2/2) \\
\frac{L^{\frac{n_1}{2}-1}_{n_2/2}
\left(-\lambda n_1 \frac{x}{2(n_1 x + n_2)}\right)}
{B(n_1/2, n_2/2)
\gamma\left(\frac{n_1 + n_2}{2}\right)}
for :math:`n_1, n_2 > 0`, :math:`\lambda \ge 0`. Here :math:`n_1` is the
degrees of freedom in the numerator, :math:`n_2` the degrees of freedom in
the denominator, :math:`\lambda` the non-centrality parameter,
:math:`\gamma` is the logarithm of the Gamma function, :math:`L_n^k` is a
generalized Laguerre polynomial and :math:`B` is the beta function.
`ncf` takes ``df1``, ``df2`` and ``nc`` as shape parameters. If ``nc=0``,
the distribution becomes equivalent to the Fisher distribution.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``ncf.pdf(x, dfn, dfd, nc, loc, scale)`` is identically
equivalent to ``ncf.pdf(y, dfn, dfd, nc) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
Examples
--------
>>> from scipy.stats import ncf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> dfn, dfd, nc = 27, 27, 0.416
>>> mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc),
... ncf.ppf(0.99, dfn, dfd, nc), 100)
>>> ax.plot(x, ncf.pdf(x, dfn, dfd, nc),
... 'r-', lw=5, alpha=0.6, label='ncf pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = ncf(dfn, dfd, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc)
>>> np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc))
True
Generate random numbers:
>>> r = ncf.rvs(dfn, dfd, nc, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :