Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.signal »

Classe « lti »

Informations générales

Héritage

builtins.object
    LinearTimeInvariant
        lti

Définition

class lti(LinearTimeInvariant):

Description [extrait de lti.__doc__]

    Continuous-time linear time invariant system base class.

    Parameters
    ----------
    *system : arguments
        The `lti` class can be instantiated with either 2, 3 or 4 arguments.
        The following gives the number of arguments and the corresponding
        continuous-time subclass that is created:

            * 2: `TransferFunction`:  (numerator, denominator)
            * 3: `ZerosPolesGain`: (zeros, poles, gain)
            * 4: `StateSpace`:  (A, B, C, D)

        Each argument can be an array or a sequence.

    See Also
    --------
    ZerosPolesGain, StateSpace, TransferFunction, dlti

    Notes
    -----
    `lti` instances do not exist directly. Instead, `lti` creates an instance
    of one of its subclasses: `StateSpace`, `TransferFunction` or
    `ZerosPolesGain`.

    If (numerator, denominator) is passed in for ``*system``, coefficients for
    both the numerator and denominator should be specified in descending
    exponent order (e.g., ``s^2 + 3s + 5`` would be represented as ``[1, 3,
    5]``).

    Changing the value of properties that are not directly part of the current
    system representation (such as the `zeros` of a `StateSpace` system) is
    very inefficient and may lead to numerical inaccuracies. It is better to
    convert to the specific system representation first. For example, call
    ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.

    Examples
    --------
    >>> from scipy import signal

    >>> signal.lti(1, 2, 3, 4)
    StateSpaceContinuous(
    array([[1]]),
    array([[2]]),
    array([[3]]),
    array([[4]]),
    dt: None
    )

    Construct the transfer function
    :math:`H(s) = \frac{5(s - 1)(s - 2)}{(s - 3)(s - 4)}`:

    >>> signal.lti([1, 2], [3, 4], 5)
    ZerosPolesGainContinuous(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: None
    )

    Construct the transfer function :math:`H(s) = \frac{3s + 4}{1s + 2}`:

    >>> signal.lti([3, 4], [1, 2])
    TransferFunctionContinuous(
    array([3., 4.]),
    array([1., 2.]),
    dt: None
    )

    

Constructeur(s)

Signature du constructeur Description
__new__(cls, *system) Create an instance of the appropriate subclass. [extrait de __new__.__doc__]
__init__(self, *system)

Liste des propriétés

Nom de la propriétéDescription
dtReturn the sampling time of the system, `None` for `lti` systems. [extrait de __doc__]
polesPoles of the system. [extrait de __doc__]
zerosZeros of the system. [extrait de __doc__]

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
bode(self, w=None, n=100)
freqresp(self, w=None, n=10000)
impulse(self, X0=None, T=None, N=None)
output(self, U, T, X0=None)
step(self, X0=None, T=None, N=None)
to_discrete(self, dt, method='zoh', alpha=None) Return a discretized version of the current system. [extrait de to_discrete.__doc__]

Méthodes héritées de la classe LinearTimeInvariant

__init_subclass__, __subclasshook__

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __hash__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__