Module « scipy.signal »
Signature de la fonction convolve2d
def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0)
Description
convolve2d.__doc__
Convolve two 2-dimensional arrays.
Convolve `in1` and `in2` with output size determined by `mode`, and
boundary conditions determined by `boundary` and `fillvalue`.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
boundary : str {'fill', 'wrap', 'symm'}, optional
A flag indicating how to handle boundaries:
``fill``
pad input arrays with fillvalue. (default)
``wrap``
circular boundary conditions.
``symm``
symmetrical boundary conditions.
fillvalue : scalar, optional
Value to fill pad input arrays with. Default is 0.
Returns
-------
out : ndarray
A 2-dimensional array containing a subset of the discrete linear
convolution of `in1` with `in2`.
Examples
--------
Compute the gradient of an image by 2D convolution with a complex Scharr
operator. (Horizontal operator is real, vertical is imaginary.) Use
symmetric boundary condition to avoid creating edges at the image
boundaries.
>>> from scipy import signal
>>> from scipy import misc
>>> ascent = misc.ascent()
>>> scharr = np.array([[ -3-3j, 0-10j, +3 -3j],
... [-10+0j, 0+ 0j, +10 +0j],
... [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy
>>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15))
>>> ax_orig.imshow(ascent, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_mag.imshow(np.absolute(grad), cmap='gray')
>>> ax_mag.set_title('Gradient magnitude')
>>> ax_mag.set_axis_off()
>>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
>>> ax_ang.set_title('Gradient orientation')
>>> ax_ang.set_axis_off()
>>> fig.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :