Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.signal »

Fonction istft - module scipy.signal

Signature de la fonction istft

def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2, scaling='spectrum') 

Description

help(scipy.signal.istft)

Perform the inverse Short Time Fourier transform (legacy function).

.. legacy:: function

    `ShortTimeFFT` is a newer STFT / ISTFT implementation with more
    features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
    implementations can be found in the :ref:`tutorial_stft` section of the
    :ref:`user_guide`.

Parameters
----------
Zxx : array_like
    STFT of the signal to be reconstructed. If a purely real array
    is passed, it will be cast to a complex data type.
fs : float, optional
    Sampling frequency of the time series. Defaults to 1.0.
window : str or tuple or array_like, optional
    Desired window to use. If `window` is a string or tuple, it is
    passed to `get_window` to generate the window values, which are
    DFT-even by default. See `get_window` for a list of windows and
    required parameters. If `window` is array_like it will be used
    directly as the window and its length must be nperseg. Defaults
    to a Hann window. Must match the window used to generate the
    STFT for faithful inversion.
nperseg : int, optional
    Number of data points corresponding to each STFT segment. This
    parameter must be specified if the number of data points per
    segment is odd, or if the STFT was padded via ``nfft >
    nperseg``. If `None`, the value depends on the shape of
    `Zxx` and `input_onesided`. If `input_onesided` is `True`,
    ``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise,
    ``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`.
noverlap : int, optional
    Number of points to overlap between segments. If `None`, half
    of the segment length. Defaults to `None`. When specified, the
    COLA constraint must be met (see Notes below), and should match
    the parameter used to generate the STFT. Defaults to `None`.
nfft : int, optional
    Number of FFT points corresponding to each STFT segment. This
    parameter must be specified if the STFT was padded via ``nfft >
    nperseg``. If `None`, the default values are the same as for
    `nperseg`, detailed above, with one exception: if
    `input_onesided` is True and
    ``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on
    that value. This case allows the proper inversion of an
    odd-length unpadded STFT using ``nfft=None``. Defaults to
    `None`.
input_onesided : bool, optional
    If `True`, interpret the input array as one-sided FFTs, such
    as is returned by `stft` with ``return_onesided=True`` and
    `numpy.fft.rfft`. If `False`, interpret the input as a a
    two-sided FFT. Defaults to `True`.
boundary : bool, optional
    Specifies whether the input signal was extended at its
    boundaries by supplying a non-`None` ``boundary`` argument to
    `stft`. Defaults to `True`.
time_axis : int, optional
    Where the time segments of the STFT is located; the default is
    the last axis (i.e. ``axis=-1``).
freq_axis : int, optional
    Where the frequency axis of the STFT is located; the default is
    the penultimate axis (i.e. ``axis=-2``).
scaling: {'spectrum', 'psd'}
    The default 'spectrum' scaling allows each frequency line of `Zxx` to
    be interpreted as a magnitude spectrum. The 'psd' option scales each
    line to a power spectral density - it allows to calculate the signal's
    energy by numerically integrating over ``abs(Zxx)**2``.

Returns
-------
t : ndarray
    Array of output data times.
x : ndarray
    iSTFT of `Zxx`.

See Also
--------
stft: Short Time Fourier Transform
ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
check_COLA: Check whether the Constant OverLap Add (COLA) constraint
            is met
check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met

Notes
-----
In order to enable inversion of an STFT via the inverse STFT with
`istft`, the signal windowing must obey the constraint of "nonzero
overlap add" (NOLA):

.. math:: \sum_{t}w^{2}[n-tH] \ne 0

This ensures that the normalization factors that appear in the denominator
of the overlap-add reconstruction equation

.. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}

are not zero. The NOLA constraint can be checked with the `check_NOLA`
function.

An STFT which has been modified (via masking or otherwise) is not
guaranteed to correspond to a exactly realizible signal. This
function implements the iSTFT via the least-squares estimation
algorithm detailed in [2]_, which produces a signal that minimizes
the mean squared error between the STFT of the returned signal and
the modified STFT.


.. versionadded:: 0.19.0

References
----------
.. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
       "Discrete-Time Signal Processing", Prentice Hall, 1999.
.. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
       Modified Short-Time Fourier Transform", IEEE 1984,
       10.1109/TASSP.1984.1164317

Examples
--------
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by
0.001 V**2/Hz of white noise sampled at 1024 Hz.

>>> fs = 1024
>>> N = 10*fs
>>> nperseg = 512
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> carrier = amp * np.sin(2*np.pi*50*time)
>>> noise = rng.normal(scale=np.sqrt(noise_power),
...                    size=time.shape)
>>> x = carrier + noise

Compute the STFT, and plot its magnitude

>>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg)
>>> plt.figure()
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
>>> plt.ylim([f[1], f[-1]])
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.yscale('log')
>>> plt.show()

Zero the components that are 10% or less of the carrier magnitude,
then convert back to a time series via inverse STFT

>>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0)
>>> _, xrec = signal.istft(Zxx, fs)

Compare the cleaned signal with the original and true carrier signals.

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([2, 2.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()

Note that the cleaned signal does not start as abruptly as the original,
since some of the coefficients of the transient were also removed:

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([0, 0.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé