Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.signal »

Fonction ellip - module scipy.signal

Signature de la fonction ellip

def ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba', fs=None) 

Description

ellip.__doc__

    Elliptic (Cauer) digital and analog filter design.

    Design an Nth-order digital or analog elliptic filter and return
    the filter coefficients.

    Parameters
    ----------
    N : int
        The order of the filter.
    rp : float
        The maximum ripple allowed below unity gain in the passband.
        Specified in decibels, as a positive number.
    rs : float
        The minimum attenuation required in the stop band.
        Specified in decibels, as a positive number.
    Wn : array_like
        A scalar or length-2 sequence giving the critical frequencies.
        For elliptic filters, this is the point in the transition band at
        which the gain first drops below -`rp`.

        For digital filters, `Wn` are in the same units as `fs`. By default,
        `fs` is 2 half-cycles/sample, so these are normalized from 0 to 1,
        where 1 is the Nyquist frequency. (`Wn` is thus in
        half-cycles / sample.)

        For analog filters, `Wn` is an angular frequency (e.g., rad/s).
    btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional
        The type of filter. Default is 'lowpass'.
    analog : bool, optional
        When True, return an analog filter, otherwise a digital filter is
        returned.
    output : {'ba', 'zpk', 'sos'}, optional
        Type of output:  numerator/denominator ('ba'), pole-zero ('zpk'), or
        second-order sections ('sos'). Default is 'ba' for backwards
        compatibility, but 'sos' should be used for general-purpose filtering.
    fs : float, optional
        The sampling frequency of the digital system.

        .. versionadded:: 1.2.0

    Returns
    -------
    b, a : ndarray, ndarray
        Numerator (`b`) and denominator (`a`) polynomials of the IIR filter.
        Only returned if ``output='ba'``.
    z, p, k : ndarray, ndarray, float
        Zeros, poles, and system gain of the IIR filter transfer
        function.  Only returned if ``output='zpk'``.
    sos : ndarray
        Second-order sections representation of the IIR filter.
        Only returned if ``output=='sos'``.

    See Also
    --------
    ellipord, ellipap

    Notes
    -----
    Also known as Cauer or Zolotarev filters, the elliptical filter maximizes
    the rate of transition between the frequency response's passband and
    stopband, at the expense of ripple in both, and increased ringing in the
    step response.

    As `rp` approaches 0, the elliptical filter becomes a Chebyshev
    type II filter (`cheby2`). As `rs` approaches 0, it becomes a Chebyshev
    type I filter (`cheby1`). As both approach 0, it becomes a Butterworth
    filter (`butter`).

    The equiripple passband has N maxima or minima (for example, a
    5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is
    unity for odd-order filters, or -rp dB for even-order filters.

    The ``'sos'`` output parameter was added in 0.16.0.

    Examples
    --------
    Design an analog filter and plot its frequency response, showing the
    critical points:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> b, a = signal.ellip(4, 5, 40, 100, 'low', analog=True)
    >>> w, h = signal.freqs(b, a)
    >>> plt.semilogx(w, 20 * np.log10(abs(h)))
    >>> plt.title('Elliptic filter frequency response (rp=5, rs=40)')
    >>> plt.xlabel('Frequency [radians / second]')
    >>> plt.ylabel('Amplitude [dB]')
    >>> plt.margins(0, 0.1)
    >>> plt.grid(which='both', axis='both')
    >>> plt.axvline(100, color='green') # cutoff frequency
    >>> plt.axhline(-40, color='green') # rs
    >>> plt.axhline(-5, color='green') # rp
    >>> plt.show()

    Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz

    >>> t = np.linspace(0, 1, 1000, False)  # 1 second
    >>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
    >>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
    >>> ax1.plot(t, sig)
    >>> ax1.set_title('10 Hz and 20 Hz sinusoids')
    >>> ax1.axis([0, 1, -2, 2])

    Design a digital high-pass filter at 17 Hz to remove the 10 Hz tone, and
    apply it to the signal. (It's recommended to use second-order sections
    format when filtering, to avoid numerical error with transfer function
    (``ba``) format):

    >>> sos = signal.ellip(8, 1, 100, 17, 'hp', fs=1000, output='sos')
    >>> filtered = signal.sosfilt(sos, sig)
    >>> ax2.plot(t, filtered)
    >>> ax2.set_title('After 17 Hz high-pass filter')
    >>> ax2.axis([0, 1, -2, 2])
    >>> ax2.set_xlabel('Time [seconds]')
    >>> plt.tight_layout()
    >>> plt.show()