Module « scipy.signal »
Signature de la fonction ellip
def ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba', fs=None)
Description
ellip.__doc__
Elliptic (Cauer) digital and analog filter design.
Design an Nth-order digital or analog elliptic filter and return
the filter coefficients.
Parameters
----------
N : int
The order of the filter.
rp : float
The maximum ripple allowed below unity gain in the passband.
Specified in decibels, as a positive number.
rs : float
The minimum attenuation required in the stop band.
Specified in decibels, as a positive number.
Wn : array_like
A scalar or length-2 sequence giving the critical frequencies.
For elliptic filters, this is the point in the transition band at
which the gain first drops below -`rp`.
For digital filters, `Wn` are in the same units as `fs`. By default,
`fs` is 2 half-cycles/sample, so these are normalized from 0 to 1,
where 1 is the Nyquist frequency. (`Wn` is thus in
half-cycles / sample.)
For analog filters, `Wn` is an angular frequency (e.g., rad/s).
btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional
The type of filter. Default is 'lowpass'.
analog : bool, optional
When True, return an analog filter, otherwise a digital filter is
returned.
output : {'ba', 'zpk', 'sos'}, optional
Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or
second-order sections ('sos'). Default is 'ba' for backwards
compatibility, but 'sos' should be used for general-purpose filtering.
fs : float, optional
The sampling frequency of the digital system.
.. versionadded:: 1.2.0
Returns
-------
b, a : ndarray, ndarray
Numerator (`b`) and denominator (`a`) polynomials of the IIR filter.
Only returned if ``output='ba'``.
z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if ``output='zpk'``.
sos : ndarray
Second-order sections representation of the IIR filter.
Only returned if ``output=='sos'``.
See Also
--------
ellipord, ellipap
Notes
-----
Also known as Cauer or Zolotarev filters, the elliptical filter maximizes
the rate of transition between the frequency response's passband and
stopband, at the expense of ripple in both, and increased ringing in the
step response.
As `rp` approaches 0, the elliptical filter becomes a Chebyshev
type II filter (`cheby2`). As `rs` approaches 0, it becomes a Chebyshev
type I filter (`cheby1`). As both approach 0, it becomes a Butterworth
filter (`butter`).
The equiripple passband has N maxima or minima (for example, a
5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is
unity for odd-order filters, or -rp dB for even-order filters.
The ``'sos'`` output parameter was added in 0.16.0.
Examples
--------
Design an analog filter and plot its frequency response, showing the
critical points:
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> b, a = signal.ellip(4, 5, 40, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Elliptic filter frequency response (rp=5, rs=40)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-40, color='green') # rs
>>> plt.axhline(-5, color='green') # rp
>>> plt.show()
Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz
>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])
Design a digital high-pass filter at 17 Hz to remove the 10 Hz tone, and
apply it to the signal. (It's recommended to use second-order sections
format when filtering, to avoid numerical error with transfer function
(``ba``) format):
>>> sos = signal.ellip(8, 1, 100, 17, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 17 Hz high-pass filter')
>>> ax2.axis([0, 1, -2, 2])
>>> ax2.set_xlabel('Time [seconds]')
>>> plt.tight_layout()
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :