Module « scipy.signal »
Signature de la fonction cont2discrete
def cont2discrete(system, dt, method='zoh', alpha=None)
Description
cont2discrete.__doc__
Transform a continuous to a discrete state-space system.
Parameters
----------
system : a tuple describing the system or an instance of `lti`
The following gives the number of elements in the tuple and
the interpretation:
* 1: (instance of `lti`)
* 2: (num, den)
* 3: (zeros, poles, gain)
* 4: (A, B, C, D)
dt : float
The discretization time step.
method : str, optional
Which method to use:
* gbt: generalized bilinear transformation
* bilinear: Tustin's approximation ("gbt" with alpha=0.5)
* euler: Euler (or forward differencing) method ("gbt" with alpha=0)
* backward_diff: Backwards differencing ("gbt" with alpha=1.0)
* zoh: zero-order hold (default)
* foh: first-order hold (*versionadded: 1.3.0*)
* impulse: equivalent impulse response (*versionadded: 1.3.0*)
alpha : float within [0, 1], optional
The generalized bilinear transformation weighting parameter, which
should only be specified with method="gbt", and is ignored otherwise
Returns
-------
sysd : tuple containing the discrete system
Based on the input type, the output will be of the form
* (num, den, dt) for transfer function input
* (zeros, poles, gain, dt) for zeros-poles-gain input
* (A, B, C, D, dt) for state-space system input
Notes
-----
By default, the routine uses a Zero-Order Hold (zoh) method to perform
the transformation. Alternatively, a generalized bilinear transformation
may be used, which includes the common Tustin's bilinear approximation,
an Euler's method technique, or a backwards differencing technique.
The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear
approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method
is based on [4]_.
Examples
--------
We can transform a continuous state-space system to a discrete one:
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cont2discrete, lti, dlti, dstep
Define a continuous state-space system.
>>> A = np.array([[0, 1],[-10., -3]])
>>> B = np.array([[0],[10.]])
>>> C = np.array([[1., 0]])
>>> D = np.array([[0.]])
>>> l_system = lti(A, B, C, D)
>>> t, x = l_system.step(T=np.linspace(0, 5, 100))
>>> fig, ax = plt.subplots()
>>> ax.plot(t, x, label='Continuous', linewidth=3)
Transform it to a discrete state-space system using several methods.
>>> dt = 0.1
>>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh', 'impulse']:
... d_system = cont2discrete((A, B, C, D), dt, method=method)
... s, x_d = dstep(d_system)
... ax.step(s, np.squeeze(x_d), label=method, where='post')
>>> ax.axis([t[0], t[-1], x[0], 1.4])
>>> ax.legend(loc='best')
>>> fig.tight_layout()
>>> plt.show()
References
----------
.. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models
.. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf
.. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized
bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754,
2009.
(https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)
.. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control
of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley,
pp. 204-206, 1998.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :