Module « scipy.signal »
Signature de la fonction kaiserord
def kaiserord(ripple, width)
Description
kaiserord.__doc__
Determine the filter window parameters for the Kaiser window method.
The parameters returned by this function are generally used to create
a finite impulse response filter using the window method, with either
`firwin` or `firwin2`.
Parameters
----------
ripple : float
Upper bound for the deviation (in dB) of the magnitude of the
filter's frequency response from that of the desired filter (not
including frequencies in any transition intervals). That is, if w
is the frequency expressed as a fraction of the Nyquist frequency,
A(w) is the actual frequency response of the filter and D(w) is the
desired frequency response, the design requirement is that::
abs(A(w) - D(w))) < 10**(-ripple/20)
for 0 <= w <= 1 and w not in a transition interval.
width : float
Width of transition region, normalized so that 1 corresponds to pi
radians / sample. That is, the frequency is expressed as a fraction
of the Nyquist frequency.
Returns
-------
numtaps : int
The length of the Kaiser window.
beta : float
The beta parameter for the Kaiser window.
See Also
--------
kaiser_beta, kaiser_atten
Notes
-----
There are several ways to obtain the Kaiser window:
- ``signal.windows.kaiser(numtaps, beta, sym=True)``
- ``signal.get_window(beta, numtaps)``
- ``signal.get_window(('kaiser', beta), numtaps)``
The empirical equations discovered by Kaiser are used.
References
----------
Oppenheim, Schafer, "Discrete-Time Signal Processing", pp.475-476.
Examples
--------
We will use the Kaiser window method to design a lowpass FIR filter
for a signal that is sampled at 1000 Hz.
We want at least 65 dB rejection in the stop band, and in the pass
band the gain should vary no more than 0.5%.
We want a cutoff frequency of 175 Hz, with a transition between the
pass band and the stop band of 24 Hz. That is, in the band [0, 163],
the gain varies no more than 0.5%, and in the band [187, 500], the
signal is attenuated by at least 65 dB.
>>> from scipy.signal import kaiserord, firwin, freqz
>>> import matplotlib.pyplot as plt
>>> fs = 1000.0
>>> cutoff = 175
>>> width = 24
The Kaiser method accepts just a single parameter to control the pass
band ripple and the stop band rejection, so we use the more restrictive
of the two. In this case, the pass band ripple is 0.005, or 46.02 dB,
so we will use 65 dB as the design parameter.
Use `kaiserord` to determine the length of the filter and the
parameter for the Kaiser window.
>>> numtaps, beta = kaiserord(65, width/(0.5*fs))
>>> numtaps
167
>>> beta
6.20426
Use `firwin` to create the FIR filter.
>>> taps = firwin(numtaps, cutoff, window=('kaiser', beta),
... scale=False, nyq=0.5*fs)
Compute the frequency response of the filter. ``w`` is the array of
frequencies, and ``h`` is the corresponding complex array of frequency
responses.
>>> w, h = freqz(taps, worN=8000)
>>> w *= 0.5*fs/np.pi # Convert w to Hz.
Compute the deviation of the magnitude of the filter's response from
that of the ideal lowpass filter. Values in the transition region are
set to ``nan``, so they won't appear in the plot.
>>> ideal = w < cutoff # The "ideal" frequency response.
>>> deviation = np.abs(np.abs(h) - ideal)
>>> deviation[(w > cutoff - 0.5*width) & (w < cutoff + 0.5*width)] = np.nan
Plot the deviation. A close look at the left end of the stop band shows
that the requirement for 65 dB attenuation is violated in the first lobe
by about 0.125 dB. This is not unusual for the Kaiser window method.
>>> plt.plot(w, 20*np.log10(np.abs(deviation)))
>>> plt.xlim(0, 0.5*fs)
>>> plt.ylim(-90, -60)
>>> plt.grid(alpha=0.25)
>>> plt.axhline(-65, color='r', ls='--', alpha=0.3)
>>> plt.xlabel('Frequency (Hz)')
>>> plt.ylabel('Deviation from ideal (dB)')
>>> plt.title('Lowpass Filter Frequency Response')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :