Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.signal »

Fonction bessel - module scipy.signal

Signature de la fonction bessel

def bessel(N, Wn, btype='low', analog=False, output='ba', norm='phase', fs=None) 

Description

help(scipy.signal.bessel)

Bessel/Thomson digital and analog filter design.

Design an Nth-order digital or analog Bessel filter and return the
filter coefficients.

Parameters
----------
N : int
    The order of the filter.
Wn : array_like
    A scalar or length-2 sequence giving the critical frequencies (defined
    by the `norm` parameter).
    For analog filters, `Wn` is an angular frequency (e.g., rad/s).

    For digital filters, `Wn` are in the same units as `fs`.  By default,
    `fs` is 2 half-cycles/sample, so these are normalized from 0 to 1,
    where 1 is the Nyquist frequency. (`Wn` is thus in
    half-cycles / sample.)
btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional
    The type of filter.  Default is 'lowpass'.
analog : bool, optional
    When True, return an analog filter, otherwise a digital filter is
    returned. (See Notes.)
output : {'ba', 'zpk', 'sos'}, optional
    Type of output:  numerator/denominator ('ba'), pole-zero ('zpk'), or
    second-order sections ('sos'). Default is 'ba'.
norm : {'phase', 'delay', 'mag'}, optional
    Critical frequency normalization:

    ``phase``
        The filter is normalized such that the phase response reaches its
        midpoint at angular (e.g. rad/s) frequency `Wn`. This happens for
        both low-pass and high-pass filters, so this is the
        "phase-matched" case.

        The magnitude response asymptotes are the same as a Butterworth
        filter of the same order with a cutoff of `Wn`.

        This is the default, and matches MATLAB's implementation.

    ``delay``
        The filter is normalized such that the group delay in the passband
        is 1/`Wn` (e.g., seconds). This is the "natural" type obtained by
        solving Bessel polynomials.

    ``mag``
        The filter is normalized such that the gain magnitude is -3 dB at
        angular frequency `Wn`.

    .. versionadded:: 0.18.0
fs : float, optional
    The sampling frequency of the digital system.

    .. versionadded:: 1.2.0

Returns
-------
b, a : ndarray, ndarray
    Numerator (`b`) and denominator (`a`) polynomials of the IIR filter.
    Only returned if ``output='ba'``.
z, p, k : ndarray, ndarray, float
    Zeros, poles, and system gain of the IIR filter transfer
    function.  Only returned if ``output='zpk'``.
sos : ndarray
    Second-order sections representation of the IIR filter.
    Only returned if ``output='sos'``.

Notes
-----
Also known as a Thomson filter, the analog Bessel filter has maximally
flat group delay and maximally linear phase response, with very little
ringing in the step response. [1]_

The Bessel is inherently an analog filter. This function generates digital
Bessel filters using the bilinear transform, which does not preserve the
phase response of the analog filter. As such, it is only approximately
correct at frequencies below about fs/4. To get maximally-flat group
delay at higher frequencies, the analog Bessel filter must be transformed
using phase-preserving techniques.

See `besselap` for implementation details and references.

The ``'sos'`` output parameter was added in 0.16.0.

References
----------
.. [1] Thomson, W.E., "Delay Networks having Maximally Flat Frequency
       Characteristics", Proceedings of the Institution of Electrical
       Engineers, Part III, November 1949, Vol. 96, No. 44, pp. 487-490.

Examples
--------
Plot the phase-normalized frequency response, showing the relationship
to the Butterworth's cutoff frequency (green):

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> b, a = signal.butter(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)), color='silver', ls='dashed')
>>> b, a = signal.bessel(4, 100, 'low', analog=True, norm='phase')
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)))
>>> plt.title('Bessel filter magnitude response (with Butterworth)')
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green')  # cutoff frequency
>>> plt.show()

and the phase midpoint:

>>> plt.figure()
>>> plt.semilogx(w, np.unwrap(np.angle(h)))
>>> plt.axvline(100, color='green')  # cutoff frequency
>>> plt.axhline(-np.pi, color='red')  # phase midpoint
>>> plt.title('Bessel filter phase response')
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Phase [rad]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()

Plot the magnitude-normalized frequency response, showing the -3 dB cutoff:

>>> b, a = signal.bessel(3, 10, 'low', analog=True, norm='mag')
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)))
>>> plt.axhline(-3, color='red')  # -3 dB magnitude
>>> plt.axvline(10, color='green')  # cutoff frequency
>>> plt.title('Amplitude-normalized Bessel filter frequency response')
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()

Plot the delay-normalized filter, showing the maximally-flat group delay
at 0.1 seconds:

>>> b, a = signal.bessel(5, 1/0.1, 'low', analog=True, norm='delay')
>>> w, h = signal.freqs(b, a)
>>> plt.figure()
>>> plt.semilogx(w[1:], -np.diff(np.unwrap(np.angle(h)))/np.diff(w))
>>> plt.axhline(0.1, color='red')  # 0.1 seconds group delay
>>> plt.title('Bessel filter group delay')
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Group delay [s]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé