Module « scipy.signal »
Signature de la fonction lp2bp
def lp2bp(b, a, wo=1.0, bw=1.0)
Description
lp2bp.__doc__
Transform a lowpass filter prototype to a bandpass filter.
Return an analog band-pass filter with center frequency `wo` and
bandwidth `bw` from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function ('ba') representation.
Parameters
----------
b : array_like
Numerator polynomial coefficients.
a : array_like
Denominator polynomial coefficients.
wo : float
Desired passband center, as angular frequency (e.g., rad/s).
Defaults to no change.
bw : float
Desired passband width, as angular frequency (e.g., rad/s).
Defaults to 1.
Returns
-------
b : array_like
Numerator polynomial coefficients of the transformed band-pass filter.
a : array_like
Denominator polynomial coefficients of the transformed band-pass filter.
See Also
--------
lp2lp, lp2hp, lp2bs, bilinear
lp2bp_zpk
Notes
-----
This is derived from the s-plane substitution
.. math:: s \rightarrow \frac{s^2 + {\omega_0}^2}{s \cdot \mathrm{BW}}
This is the "wideband" transformation, producing a passband with
geometric (log frequency) symmetry about `wo`.
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> lp = signal.lti([1.0], [1.0, 1.0])
>>> bp = signal.lti(*signal.lp2bp(lp.num, lp.den))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_bp, p_bp = bp.bode(w)
>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_bp, label='Bandpass')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :