Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé

Contenu du module « scipy.signal »

Liste des classes du module scipy.signal

Nom de la classe Description
CZT
dlti
lti
ShortTimeFFT Provide a parametrized discrete Short-time Fourier transform (stft) [extrait de ShortTimeFFT.__doc__]
StateSpace
TransferFunction Linear Time Invariant system class in transfer function form. [extrait de TransferFunction.__doc__]
ZerosPolesGain
ZoomFFT

Liste des exceptions du module scipy.signal

Nom de la classe d'exception Description
BadCoefficients Warning about badly conditioned filter coefficients [extrait de BadCoefficients.__doc__]

Liste des fonctions du module scipy.signal

Signature de la fonction Description
abcd_normalize(A=None, B=None, C=None, D=None) Check state-space matrices and ensure they are 2-D. [extrait de abcd_normalize.__doc__]
argrelextrema(data, comparator, axis=0, order=1, mode='clip')
argrelmax(data, axis=0, order=1, mode='clip')
argrelmin(data, axis=0, order=1, mode='clip')
band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type)
bessel(N, Wn, btype='low', analog=False, output='ba', norm='phase', fs=None)
besselap(N, norm='phase')
bilinear(b, a, fs=1.0)
bilinear_zpk(z, p, k, fs)
bode(system, w=None, n=100)
buttap(N) Return (z,p,k) for analog prototype of Nth-order Butterworth filter. [extrait de buttap.__doc__]
butter(N, Wn, btype='low', analog=False, output='ba', fs=None)
buttord(wp, ws, gpass, gstop, analog=False, fs=None) Butterworth filter order selection. [extrait de buttord.__doc__]
cheb1ap(N, rp)
cheb1ord(wp, ws, gpass, gstop, analog=False, fs=None) Chebyshev type I filter order selection. [extrait de cheb1ord.__doc__]
cheb2ap(N, rs)
cheb2ord(wp, ws, gpass, gstop, analog=False, fs=None) Chebyshev type II filter order selection. [extrait de cheb2ord.__doc__]
cheby1(N, rp, Wn, btype='low', analog=False, output='ba', fs=None)
cheby2(N, rs, Wn, btype='low', analog=False, output='ba', fs=None)
check_COLA(window, nperseg, noverlap, tol=1e-10) Check whether the Constant OverLap Add (COLA) constraint is met. [extrait de check_COLA.__doc__]
check_NOLA(window, nperseg, noverlap, tol=1e-10) Check whether the Nonzero Overlap Add (NOLA) constraint is met. [extrait de check_NOLA.__doc__]
chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True, *, complex=False) Frequency-swept cosine generator. [extrait de chirp.__doc__]
choose_conv_method(in1, in2, mode='full', measure=False)
coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', axis=-1)
cont2discrete(system, dt, method='zoh', alpha=None)
convolve(in1, in2, mode='full', method='auto')
convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0)
correlate(in1, in2, mode='full', method='auto')
correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0)
correlation_lags(in1_len, in2_len, mode='full')
csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, average='mean')
cspline1d(signal, lamb=0.0)
cspline1d_eval(cj, newx, dx=1.0, x0=0) Evaluate a cubic spline at the new set of points. [extrait de cspline1d_eval.__doc__]
cspline2d(signal, lamb=0.0, precision=-1.0)
czt(x, m=None, w=None, a=(1+0j), *, axis=-1)
czt_points(m, w=None, a=(1+0j))
dbode(system, w=None, n=100)
decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True)
deconvolve(signal, divisor) Deconvolves ``divisor`` out of ``signal`` using inverse filtering. [extrait de deconvolve.__doc__]
detrend(data: 'np.ndarray', axis: 'int' = -1, type: "Literal['linear', 'constant']" = 'linear', bp: 'ArrayLike | int' = 0, overwrite_data: 'bool' = False) -> 'np.ndarray' Remove linear or constant trend along axis from data. [extrait de detrend.__doc__]
dfreqresp(system, w=None, n=10000, whole=False)
dimpulse(system, x0=None, t=None, n=None)
dlsim(system, u, t=None, x0=None)
dstep(system, x0=None, t=None, n=None)
ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba', fs=None)
ellipap(N, rp, rs) Return (z,p,k) of Nth-order elliptic analog lowpass filter. [extrait de ellipap.__doc__]
ellipord(wp, ws, gpass, gstop, analog=False, fs=None) Elliptic (Cauer) filter order selection. [extrait de ellipord.__doc__]
envelope(z: 'np.ndarray', bp_in: 'tuple[int | None, int | None]' = (1, None), *, n_out: 'int | None' = None, squared: 'bool' = False, residual: "Literal['lowpass', 'all', None]" = 'lowpass', axis: 'int' = -1) -> 'np.ndarray' Compute the envelope of a real- or complex-valued signal. [extrait de envelope.__doc__]
fftconvolve(in1, in2, mode='full', axes=None) Convolve two N-dimensional arrays using FFT. [extrait de fftconvolve.__doc__]
filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)
find_peaks(x, height=None, threshold=None, distance=None, prominence=None, width=None, wlen=None, rel_height=0.5, plateau_size=None)
find_peaks_cwt(vector, widths, wavelet=None, max_distances=None, gap_thresh=None, min_length=None, min_snr=1, noise_perc=10, window_size=None)
findfreqs(num, den, N, kind='ba')
firls(numtaps, bands, desired, *, weight=None, fs=None)
firwin(numtaps, cutoff, *, width=None, window='hamming', pass_zero=True, scale=True, fs=None)
firwin2(numtaps, freq, gain, *, nfreqs=None, window='hamming', antisymmetric=False, fs=None)
freqresp(system, w=None, n=10000) Calculate the frequency response of a continuous-time system. [extrait de freqresp.__doc__]
freqs(b, a, worN=200, plot=None)
freqs_zpk(z, p, k, worN=200)
freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586, include_nyquist=False)
freqz_sos(sos, worN=512, whole=False, fs=6.283185307179586)
freqz_zpk(z, p, k, worN=512, whole=False, fs=6.283185307179586)
gammatone(freq, ftype, order=None, numtaps=None, fs=None)
gauss_spline(x, n) Gaussian approximation to B-spline basis function of order n. [extrait de gauss_spline.__doc__]
gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False)
get_window(window, Nx, fftbins=True)
group_delay(system, w=512, whole=False, fs=6.283185307179586) Compute the group delay of a digital filter. [extrait de group_delay.__doc__]
hilbert(x, N=None, axis=-1) FFT-based computation of the analytic signal. [extrait de hilbert.__doc__]
hilbert2(x, N=None)
iircomb(w0, Q, ftype='notch', fs=2.0, *, pass_zero=False)
iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip', output='ba', fs=None) Complete IIR digital and analog filter design. [extrait de iirdesign.__doc__]
iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, ftype='butter', output='ba', fs=None)
iirnotch(w0, Q, fs=2.0)
iirpeak(w0, Q, fs=2.0)
impulse(system, X0=None, T=None, N=None) Impulse response of continuous-time system. [extrait de impulse.__doc__]
invres(r, p, k, tol=0.001, rtype='avg') Compute b(s) and a(s) from partial fraction expansion. [extrait de invres.__doc__]
invresz(r, p, k, tol=0.001, rtype='avg') Compute b(z) and a(z) from partial fraction expansion. [extrait de invresz.__doc__]
istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2, scaling='spectrum') Perform the inverse Short Time Fourier transform (legacy function). [extrait de istft.__doc__]
kaiser_atten(numtaps, width) Compute the attenuation of a Kaiser FIR filter. [extrait de kaiser_atten.__doc__]
kaiser_beta(a) Compute the Kaiser parameter `beta`, given the attenuation `a`. [extrait de kaiser_beta.__doc__]
kaiserord(ripple, width)
lfilter(b, a, x, axis=-1, zi=None)
lfilter_zi(b, a)
lfiltic(b, a, y, x=None)
lombscargle(x: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[bool | int | float | complex | str | bytes]], y: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[bool | int | float | complex | str | bytes]], freqs: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[bool | int | float | complex | str | bytes]], precenter: bool = False, normalize: Union[bool, Literal['power', 'normalize', 'amplitude']] = False, *, weights: numpy.ndarray[tuple[int, ...], numpy.dtype[+_ScalarType_co]] | None = None, floating_mean: bool = False) -> numpy.ndarray[tuple[int, ...], numpy.dtype[+_ScalarType_co]]
lp2bp(b, a, wo=1.0, bw=1.0)
lp2bp_zpk(z, p, k, wo=1.0, bw=1.0)
lp2bs(b, a, wo=1.0, bw=1.0)
lp2bs_zpk(z, p, k, wo=1.0, bw=1.0)
lp2hp(b, a, wo=1.0)
lp2hp_zpk(z, p, k, wo=1.0)
lp2lp(b, a, wo=1.0)
lp2lp_zpk(z, p, k, wo=1.0)
lsim(system, U, T, X0=None, interp=True)
max_len_seq(nbits, state=None, length=None, taps=None)
medfilt(volume, kernel_size=None)
medfilt2d(input, kernel_size=3)
minimum_phase(h: numpy.ndarray, method: Literal['homomorphic', 'hilbert'] = 'homomorphic', n_fft: int | None = None, *, half: bool = True) -> numpy.ndarray Convert a linear-phase FIR filter to minimum phase [extrait de minimum_phase.__doc__]
normalize(b, a) Normalize numerator/denominator of a continuous-time transfer function. [extrait de normalize.__doc__]
oaconvolve(in1, in2, mode='full', axes=None) Convolve two N-dimensional arrays using the overlap-add method. [extrait de oaconvolve.__doc__]
order_filter(a, domain, rank)
peak_prominences(x, peaks, wlen=None)
peak_widths(x, peaks, rel_height=0.5, prominence_data=None, wlen=None)
periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1)
place_poles(A, B, poles, method='YT', rtol=0.001, maxiter=30)
qspline1d(signal, lamb=0.0) Compute quadratic spline coefficients for rank-1 array. [extrait de qspline1d.__doc__]
qspline1d_eval(cj, newx, dx=1.0, x0=0) Evaluate a quadratic spline at the new set of points. [extrait de qspline1d_eval.__doc__]
qspline2d(signal, lamb=0.0, precision=-1.0)
remez(numtaps, bands, desired, *, weight=None, type='bandpass', maxiter=25, grid_density=16, fs=None)
resample(x, num, t=None, axis=0, window=None, domain='time')
resample_poly(x, up, down, axis=0, window=('kaiser', 5.0), padtype='constant', cval=None)
residue(b, a, tol=0.001, rtype='avg') Compute partial-fraction expansion of b(s) / a(s). [extrait de residue.__doc__]
residuez(b, a, tol=0.001, rtype='avg') Compute partial-fraction expansion of b(z) / a(z). [extrait de residuez.__doc__]
savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None, use='conv') Compute the coefficients for a 1-D Savitzky-Golay FIR filter. [extrait de savgol_coeffs.__doc__]
savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0, axis=-1, mode='interp', cval=0.0) Apply a Savitzky-Golay filter to an array. [extrait de savgol_filter.__doc__]
sawtooth(t, width=1)
sepfir2d out = sepfir2d(input, hrow, hcol) [extrait de sepfir2d.__doc__]
sos2tf(sos)
sos2zpk(sos)
sosfilt(sos, x, axis=-1, zi=None)
sosfilt_zi(sos)
sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None)
sosfreqz(*args, **kwargs)
spectrogram(x, fs=1.0, window=('tukey', 0.25), nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, mode='psd') Compute a spectrogram with consecutive Fourier transforms (legacy function). [extrait de spectrogram.__doc__]
spline_filter(Iin, lmbda=5.0) Smoothing spline (cubic) filtering of a rank-2 array. [extrait de spline_filter.__doc__]
square(t, duty=0.5)
ss2tf(A, B, C, D, input=0) State-space to transfer function. [extrait de ss2tf.__doc__]
ss2zpk(A, B, C, D, input=0) State-space representation to zero-pole-gain representation. [extrait de ss2zpk.__doc__]
step(system, X0=None, T=None, N=None) Step response of continuous-time system. [extrait de step.__doc__]
stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-1, scaling='spectrum') Compute the Short Time Fourier Transform (legacy function). [extrait de stft.__doc__]
sweep_poly(t, poly, phi=0)
symiirorder1(signal, c0, z1, precision=-1.0)
symiirorder2(input, r, omega, precision=-1.0)
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, tests=None, parallel=None)
tf2sos(b, a, pairing=None, *, analog=False)
tf2ss(num, den) Transfer function to state-space representation. [extrait de tf2ss.__doc__]
tf2zpk(b, a) Return zero, pole, gain (z, p, k) representation from a numerator, [extrait de tf2zpk.__doc__]
unique_roots(p, tol=0.001, rtype='min') Determine unique roots and their multiplicities from a list of roots. [extrait de unique_roots.__doc__]
unit_impulse(shape, idx=None, dtype=<class 'float'>)
upfirdn(h, x, up=1, down=1, axis=-1, mode='constant', cval=0) Upsample, FIR filter, and downsample. [extrait de upfirdn.__doc__]
vectorstrength(events, period)
welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, average='mean')
wiener(im, mysize=None, noise=None)
zoom_fft(x, fn, m=None, *, fs=2, endpoint=False, axis=-1)
zpk2sos(z, p, k, pairing=None, *, analog=False) Return second-order sections from zeros, poles, and gain of a system [extrait de zpk2sos.__doc__]
zpk2ss(z, p, k) Zero-pole-gain representation to state-space representation [extrait de zpk2ss.__doc__]
zpk2tf(z, p, k)


Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé