Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.signal »

Fonction argrelmin - module scipy.signal

Signature de la fonction argrelmin

def argrelmin(data, axis=0, order=1, mode='clip') 

Description

argrelmin.__doc__

    Calculate the relative minima of `data`.

    Parameters
    ----------
    data : ndarray
        Array in which to find the relative minima.
    axis : int, optional
        Axis over which to select from `data`. Default is 0.
    order : int, optional
        How many points on each side to use for the comparison
        to consider ``comparator(n, n+x)`` to be True.
    mode : str, optional
        How the edges of the vector are treated.
        Available options are 'wrap' (wrap around) or 'clip' (treat overflow
        as the same as the last (or first) element).
        Default 'clip'. See numpy.take.

    Returns
    -------
    extrema : tuple of ndarrays
        Indices of the minima in arrays of integers. ``extrema[k]`` is
        the array of indices of axis `k` of `data`. Note that the
        return value is a tuple even when `data` is 1-D.

    See Also
    --------
    argrelextrema, argrelmax, find_peaks

    Notes
    -----
    This function uses `argrelextrema` with np.less as comparator. Therefore, it
    requires a strict inequality on both sides of a value to consider it a
    minimum. This means flat minima (more than one sample wide) are not detected.
    In case of 1-D `data` `find_peaks` can be used to detect all
    local minima, including flat ones, by calling it with negated `data`.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy.signal import argrelmin
    >>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
    >>> argrelmin(x)
    (array([1, 5]),)
    >>> y = np.array([[1, 2, 1, 2],
    ...               [2, 2, 0, 0],
    ...               [5, 3, 4, 4]])
    ...
    >>> argrelmin(y, axis=1)
    (array([0, 2]), array([2, 1]))