Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « scipy.signal »

Fonction order_filter - module scipy.signal

Signature de la fonction order_filter

def order_filter(a, domain, rank) 

Description

help(scipy.signal.order_filter)

Perform an order filter on an N-D array.

Perform an order filter on the array in. The domain argument acts as a
mask centered over each pixel. The non-zero elements of domain are
used to select elements surrounding each input pixel which are placed
in a list. The list is sorted, and the output for that pixel is the
element corresponding to rank in the sorted list.

Parameters
----------
a : ndarray
    The N-dimensional input array.
domain : array_like
    A mask array with the same number of dimensions as `a`.
    Each dimension should have an odd number of elements.
rank : int
    A non-negative integer which selects the element from the
    sorted list (0 corresponds to the smallest element, 1 is the
    next smallest element, etc.).

Returns
-------
out : ndarray
    The results of the order filter in an array with the same
    shape as `a`.

Examples
--------
>>> import numpy as np
>>> from scipy import signal
>>> x = np.arange(25).reshape(5, 5)
>>> domain = np.identity(3)
>>> x
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24]])
>>> signal.order_filter(x, domain, 0)
array([[  0,   0,   0,   0,   0],
       [  0,   0,   1,   2,   0],
       [  0,   5,   6,   7,   0],
       [  0,  10,  11,  12,   0],
       [  0,   0,   0,   0,   0]])
>>> signal.order_filter(x, domain, 2)
array([[  6,   7,   8,   9,   4],
       [ 11,  12,  13,  14,   9],
       [ 16,  17,  18,  19,  14],
       [ 21,  22,  23,  24,  19],
       [ 20,  21,  22,  23,  24]])



Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé