Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.signal »

Fonction stft - module scipy.signal

Signature de la fonction stft

def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-1, scaling='spectrum') 

Description

help(scipy.signal.stft)

Compute the Short Time Fourier Transform (legacy function).

STFTs can be used as a way of quantifying the change of a
nonstationary signal's frequency and phase content over time.

.. legacy:: function

    `ShortTimeFFT` is a newer STFT / ISTFT implementation with more
    features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
    implementations can be found in the :ref:`tutorial_stft` section of the
    :ref:`user_guide`.

Parameters
----------
x : array_like
    Time series of measurement values
fs : float, optional
    Sampling frequency of the `x` time series. Defaults to 1.0.
window : str or tuple or array_like, optional
    Desired window to use. If `window` is a string or tuple, it is
    passed to `get_window` to generate the window values, which are
    DFT-even by default. See `get_window` for a list of windows and
    required parameters. If `window` is array_like it will be used
    directly as the window and its length must be nperseg. Defaults
    to a Hann window.
nperseg : int, optional
    Length of each segment. Defaults to 256.
noverlap : int, optional
    Number of points to overlap between segments. If `None`,
    ``noverlap = nperseg // 2``. Defaults to `None`. When
    specified, the COLA constraint must be met (see Notes below).
nfft : int, optional
    Length of the FFT used, if a zero padded FFT is desired. If
    `None`, the FFT length is `nperseg`. Defaults to `None`.
detrend : str or function or `False`, optional
    Specifies how to detrend each segment. If `detrend` is a
    string, it is passed as the `type` argument to the `detrend`
    function. If it is a function, it takes a segment and returns a
    detrended segment. If `detrend` is `False`, no detrending is
    done. Defaults to `False`.
return_onesided : bool, optional
    If `True`, return a one-sided spectrum for real data. If
    `False` return a two-sided spectrum. Defaults to `True`, but for
    complex data, a two-sided spectrum is always returned.
boundary : str or None, optional
    Specifies whether the input signal is extended at both ends, and
    how to generate the new values, in order to center the first
    windowed segment on the first input point. This has the benefit
    of enabling reconstruction of the first input point when the
    employed window function starts at zero. Valid options are
    ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
    'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is
    extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``.
padded : bool, optional
    Specifies whether the input signal is zero-padded at the end to
    make the signal fit exactly into an integer number of window
    segments, so that all of the signal is included in the output.
    Defaults to `True`. Padding occurs after boundary extension, if
    `boundary` is not `None`, and `padded` is `True`, as is the
    default.
axis : int, optional
    Axis along which the STFT is computed; the default is over the
    last axis (i.e. ``axis=-1``).
scaling: {'spectrum', 'psd'}
    The default 'spectrum' scaling allows each frequency line of `Zxx` to
    be interpreted as a magnitude spectrum. The 'psd' option scales each
    line to a power spectral density - it allows to calculate the signal's
    energy by numerically integrating over ``abs(Zxx)**2``.

    .. versionadded:: 1.9.0

Returns
-------
f : ndarray
    Array of sample frequencies.
t : ndarray
    Array of segment times.
Zxx : ndarray
    STFT of `x`. By default, the last axis of `Zxx` corresponds
    to the segment times.

See Also
--------
istft: Inverse Short Time Fourier Transform
ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
check_COLA: Check whether the Constant OverLap Add (COLA) constraint
            is met
check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
welch: Power spectral density by Welch's method.
spectrogram: Spectrogram by Welch's method.
csd: Cross spectral density by Welch's method.
lombscargle: Lomb-Scargle periodogram for unevenly sampled data

Notes
-----
In order to enable inversion of an STFT via the inverse STFT in
`istft`, the signal windowing must obey the constraint of "Nonzero
OverLap Add" (NOLA), and the input signal must have complete
windowing coverage (i.e. ``(x.shape[axis] - nperseg) %
(nperseg-noverlap) == 0``). The `padded` argument may be used to
accomplish this.

Given a time-domain signal :math:`x[n]`, a window :math:`w[n]`, and a hop
size :math:`H` = `nperseg - noverlap`, the windowed frame at time index
:math:`t` is given by

.. math:: x_{t}[n]=x[n]w[n-tH]

The overlap-add (OLA) reconstruction equation is given by

.. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}

The NOLA constraint ensures that every normalization term that appears
in the denominator of the OLA reconstruction equation is nonzero. Whether a
choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can
be tested with `check_NOLA`.


.. versionadded:: 0.19.0

References
----------
.. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
       "Discrete-Time Signal Processing", Prentice Hall, 1999.
.. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
       Modified Short-Time Fourier Transform", IEEE 1984,
       10.1109/TASSP.1984.1164317

Examples
--------
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
modulated around 3kHz, corrupted by white noise of exponentially
decreasing magnitude sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> mod = 500*np.cos(2*np.pi*0.25*time)
>>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
>>> noise = rng.normal(scale=np.sqrt(noise_power),
...                    size=time.shape)
>>> noise *= np.exp(-time/5)
>>> x = carrier + noise

Compute and plot the STFT's magnitude.

>>> f, t, Zxx = signal.stft(x, fs, nperseg=1000)
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

Compare the energy of the signal `x` with the energy of its STFT:

>>> E_x = sum(x**2) / fs  # Energy of x
>>> # Calculate a two-sided STFT with PSD scaling:
>>> f, t, Zxx = signal.stft(x, fs, nperseg=1000, return_onesided=False,
...                         scaling='psd')
>>> # Integrate numerically over abs(Zxx)**2:
>>> df, dt = f[1] - f[0], t[1] - t[0]
>>> E_Zxx = sum(np.sum(Zxx.real**2 + Zxx.imag**2, axis=0) * df) * dt
>>> # The energy is the same, but the numerical errors are quite large:
>>> np.isclose(E_x, E_Zxx, rtol=1e-2)
True



Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé