Module « scipy.signal »
Signature de la fonction sosfreqz
def sosfreqz(sos, worN=512, whole=False, fs=6.283185307179586)
Description
sosfreqz.__doc__
Compute the frequency response of a digital filter in SOS format.
Given `sos`, an array with shape (n, 6) of second order sections of
a digital filter, compute the frequency response of the system function::
B0(z) B1(z) B{n-1}(z)
H(z) = ----- * ----- * ... * ---------
A0(z) A1(z) A{n-1}(z)
for z = exp(omega*1j), where B{k}(z) and A{k}(z) are numerator and
denominator of the transfer function of the k-th second order section.
Parameters
----------
sos : array_like
Array of second-order filter coefficients, must have shape
``(n_sections, 6)``. Each row corresponds to a second-order
section, with the first three columns providing the numerator
coefficients and the last three providing the denominator
coefficients.
worN : {None, int, array_like}, optional
If a single integer, then compute at that many frequencies (default is
N=512). Using a number that is fast for FFT computations can result
in faster computations (see Notes of `freqz`).
If an array_like, compute the response at the frequencies given (must
be 1-D). These are in the same units as `fs`.
whole : bool, optional
Normally, frequencies are computed from 0 to the Nyquist frequency,
fs/2 (upper-half of unit-circle). If `whole` is True, compute
frequencies from 0 to fs.
fs : float, optional
The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).
.. versionadded:: 1.2.0
Returns
-------
w : ndarray
The frequencies at which `h` was computed, in the same units as `fs`.
By default, `w` is normalized to the range [0, pi) (radians/sample).
h : ndarray
The frequency response, as complex numbers.
See Also
--------
freqz, sosfilt
Notes
-----
.. versionadded:: 0.19.0
Examples
--------
Design a 15th-order bandpass filter in SOS format.
>>> from scipy import signal
>>> sos = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass',
... output='sos')
Compute the frequency response at 1500 points from DC to Nyquist.
>>> w, h = signal.sosfreqz(sos, worN=1500)
Plot the response.
>>> import matplotlib.pyplot as plt
>>> plt.subplot(2, 1, 1)
>>> db = 20*np.log10(np.maximum(np.abs(h), 1e-5))
>>> plt.plot(w/np.pi, db)
>>> plt.ylim(-75, 5)
>>> plt.grid(True)
>>> plt.yticks([0, -20, -40, -60])
>>> plt.ylabel('Gain [dB]')
>>> plt.title('Frequency Response')
>>> plt.subplot(2, 1, 2)
>>> plt.plot(w/np.pi, np.angle(h))
>>> plt.grid(True)
>>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi],
... [r'$-\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.ylabel('Phase [rad]')
>>> plt.xlabel('Normalized frequency (1.0 = Nyquist)')
>>> plt.show()
If the same filter is implemented as a single transfer function,
numerical error corrupts the frequency response:
>>> b, a = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass',
... output='ba')
>>> w, h = signal.freqz(b, a, worN=1500)
>>> plt.subplot(2, 1, 1)
>>> db = 20*np.log10(np.maximum(np.abs(h), 1e-5))
>>> plt.plot(w/np.pi, db)
>>> plt.ylim(-75, 5)
>>> plt.grid(True)
>>> plt.yticks([0, -20, -40, -60])
>>> plt.ylabel('Gain [dB]')
>>> plt.title('Frequency Response')
>>> plt.subplot(2, 1, 2)
>>> plt.plot(w/np.pi, np.angle(h))
>>> plt.grid(True)
>>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi],
... [r'$-\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.ylabel('Phase [rad]')
>>> plt.xlabel('Normalized frequency (1.0 = Nyquist)')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :