Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.signal »

Fonction fftconvolve - module scipy.signal

Signature de la fonction fftconvolve

def fftconvolve(in1, in2, mode='full', axes=None) 

Description

help(scipy.signal.fftconvolve)

Convolve two N-dimensional arrays using FFT.

Convolve `in1` and `in2` using the fast Fourier transform method, with
the output size determined by the `mode` argument.

This is generally much faster than `convolve` for large arrays (n > ~500),
but can be slower when only a few output values are needed, and can only
output float arrays (int or object array inputs will be cast to float).

As of v0.19, `convolve` automatically chooses this method or the direct
method based on an estimation of which is faster.

Parameters
----------
in1 : array_like
    First input.
in2 : array_like
    Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
    A string indicating the size of the output:

    ``full``
       The output is the full discrete linear convolution
       of the inputs. (Default)
    ``valid``
       The output consists only of those elements that do not
       rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
       must be at least as large as the other in every dimension.
    ``same``
       The output is the same size as `in1`, centered
       with respect to the 'full' output.
axes : int or array_like of ints or None, optional
    Axes over which to compute the convolution.
    The default is over all axes.

Returns
-------
out : array
    An N-dimensional array containing a subset of the discrete linear
    convolution of `in1` with `in2`.

See Also
--------
convolve : Uses the direct convolution or FFT convolution algorithm
           depending on which is faster.
oaconvolve : Uses the overlap-add method to do convolution, which is
             generally faster when the input arrays are large and
             significantly different in size.

Examples
--------
Autocorrelation of white noise is an impulse.

>>> import numpy as np
>>> from scipy import signal
>>> rng = np.random.default_rng()
>>> sig = rng.standard_normal(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
>>> ax_mag.set_title('Autocorrelation')
>>> fig.tight_layout()
>>> fig.show()

Gaussian blur implemented using FFT convolution.  Notice the dark borders
around the image, due to the zero-padding beyond its boundaries.
The `convolve2d` function allows for other types of image boundaries,
but is far slower.

>>> from scipy import datasets
>>> face = datasets.face(gray=True)
>>> kernel = np.outer(signal.windows.gaussian(70, 8),
...                   signal.windows.gaussian(70, 8))
>>> blurred = signal.fftconvolve(face, kernel, mode='same')

>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
...                                                      figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
>>> ax_blurred.set_axis_off()
>>> fig.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé