Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.signal »

Fonction periodogram - module scipy.signal

Signature de la fonction periodogram

def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1) 

Description

periodogram.__doc__

    Estimate power spectral density using a periodogram.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to 'boxcar'.
    nfft : int, optional
        Length of the FFT used. If `None` the length of `x` will be
        used.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Pxx` has units of V**2/Hz and computing the power
        spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
        is measured in V and `fs` is measured in Hz. Defaults to
        'density'
    axis : int, optional
        Axis along which the periodogram is computed; the default is
        over the last axis (i.e. ``axis=-1``).

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Pxx : ndarray
        Power spectral density or power spectrum of `x`.

    Notes
    -----
    .. versionadded:: 0.12.0

    See Also
    --------
    welch: Estimate power spectral density using Welch's method
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()

    Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
    0.001 V**2/Hz of white noise sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2*np.sqrt(2)
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> x = amp*np.sin(2*np.pi*freq*time)
    >>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)

    Compute and plot the power spectral density.

    >>> f, Pxx_den = signal.periodogram(x, fs)
    >>> plt.semilogy(f, Pxx_den)
    >>> plt.ylim([1e-7, 1e2])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('PSD [V**2/Hz]')
    >>> plt.show()

    If we average the last half of the spectral density, to exclude the
    peak, we can recover the noise power on the signal.

    >>> np.mean(Pxx_den[25000:])
    0.000985320699252543

    Now compute and plot the power spectrum.

    >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
    >>> plt.figure()
    >>> plt.semilogy(f, np.sqrt(Pxx_spec))
    >>> plt.ylim([1e-4, 1e1])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('Linear spectrum [V RMS]')
    >>> plt.show()

    The peak height in the power spectrum is an estimate of the RMS
    amplitude.

    >>> np.sqrt(Pxx_spec.max())
    2.0077340678640727