Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.signal »

Fonction correlate - module scipy.signal

Signature de la fonction correlate

def correlate(in1, in2, mode='full', method='auto') 

Description

help(scipy.signal.correlate)

Cross-correlate two N-dimensional arrays.

Cross-correlate `in1` and `in2`, with the output size determined by the
`mode` argument.

Parameters
----------
in1 : array_like
    First input.
in2 : array_like
    Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
    A string indicating the size of the output:

    ``full``
       The output is the full discrete linear cross-correlation
       of the inputs. (Default)
    ``valid``
       The output consists only of those elements that do not
       rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
       must be at least as large as the other in every dimension.
    ``same``
       The output is the same size as `in1`, centered
       with respect to the 'full' output.
method : str {'auto', 'direct', 'fft'}, optional
    A string indicating which method to use to calculate the correlation.

    ``direct``
       The correlation is determined directly from sums, the definition of
       correlation.
    ``fft``
       The Fast Fourier Transform is used to perform the correlation more
       quickly (only available for numerical arrays.)
    ``auto``
       Automatically chooses direct or Fourier method based on an estimate
       of which is faster (default).  See `convolve` Notes for more detail.

       .. versionadded:: 0.19.0

Returns
-------
correlate : array
    An N-dimensional array containing a subset of the discrete linear
    cross-correlation of `in1` with `in2`.

See Also
--------
choose_conv_method : contains more documentation on `method`.
correlation_lags : calculates the lag / displacement indices array for 1D
    cross-correlation.

Notes
-----
The correlation z of two d-dimensional arrays x and y is defined as::

    z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...])

This way, if x and y are 1-D arrays and ``z = correlate(x, y, 'full')``
then

.. math::

      z[k] = (x * y)(k - N + 1)
           = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*}

for :math:`k = 0, 1, ..., ||x|| + ||y|| - 2`

where :math:`||x||` is the length of ``x``, :math:`N = \max(||x||,||y||)`,
and :math:`y_m` is 0 when m is outside the range of y.

``method='fft'`` only works for numerical arrays as it relies on
`fftconvolve`. In certain cases (i.e., arrays of objects or when
rounding integers can lose precision), ``method='direct'`` is always used.

When using "same" mode with even-length inputs, the outputs of `correlate`
and `correlate2d` differ: There is a 1-index offset between them.

Examples
--------
Implement a matched filter using cross-correlation, to recover a signal
that has passed through a noisy channel.

>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
>>> sig_noise = sig + rng.standard_normal(len(sig))
>>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128

>>> clock = np.arange(64, len(sig), 128)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.plot(clock, sig[clock], 'ro')
>>> ax_orig.set_title('Original signal')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_corr.plot(corr)
>>> ax_corr.plot(clock, corr[clock], 'ro')
>>> ax_corr.axhline(0.5, ls=':')
>>> ax_corr.set_title('Cross-correlated with rectangular pulse')
>>> ax_orig.margins(0, 0.1)
>>> fig.tight_layout()
>>> plt.show()

Compute the cross-correlation of a noisy signal with the original signal.

>>> x = np.arange(128) / 128
>>> sig = np.sin(2 * np.pi * x)
>>> sig_noise = sig + rng.standard_normal(len(sig))
>>> corr = signal.correlate(sig_noise, sig)
>>> lags = signal.correlation_lags(len(sig), len(sig_noise))
>>> corr /= np.max(corr)

>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, figsize=(4.8, 4.8))
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('Original signal')
>>> ax_orig.set_xlabel('Sample Number')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_noise.set_xlabel('Sample Number')
>>> ax_corr.plot(lags, corr)
>>> ax_corr.set_title('Cross-correlated signal')
>>> ax_corr.set_xlabel('Lag')
>>> ax_orig.margins(0, 0.1)
>>> ax_noise.margins(0, 0.1)
>>> ax_corr.margins(0, 0.1)
>>> fig.tight_layout()
>>> plt.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé