Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.signal »

Fonction tf2zpk - module scipy.signal

Signature de la fonction tf2zpk

def tf2zpk(b, a) 

Description

tf2zpk.__doc__

Return zero, pole, gain (z, p, k) representation from a numerator,
    denominator representation of a linear filter.

    Parameters
    ----------
    b : array_like
        Numerator polynomial coefficients.
    a : array_like
        Denominator polynomial coefficients.

    Returns
    -------
    z : ndarray
        Zeros of the transfer function.
    p : ndarray
        Poles of the transfer function.
    k : float
        System gain.

    Notes
    -----
    If some values of `b` are too close to 0, they are removed. In that case,
    a BadCoefficients warning is emitted.

    The `b` and `a` arrays are interpreted as coefficients for positive,
    descending powers of the transfer function variable. So the inputs
    :math:`b = [b_0, b_1, ..., b_M]` and :math:`a =[a_0, a_1, ..., a_N]`
    can represent an analog filter of the form:

    .. math::

        H(s) = \frac
        {b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M}
        {a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N}

    or a discrete-time filter of the form:

    .. math::

        H(z) = \frac
        {b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M}
        {a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N}

    This "positive powers" form is found more commonly in controls
    engineering. If `M` and `N` are equal (which is true for all filters
    generated by the bilinear transform), then this happens to be equivalent
    to the "negative powers" discrete-time form preferred in DSP:

    .. math::

        H(z) = \frac
        {b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}
        {a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}}

    Although this is true for common filters, remember that this is not true
    in the general case. If `M` and `N` are not equal, the discrete-time
    transfer function coefficients must first be converted to the "positive
    powers" form before finding the poles and zeros.