Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Return zero, pole, gain (z, p, k) representation from a numerator,
denominator representation of a linear filter.
Parameters
----------
b : array_like
Numerator polynomial coefficients.
a : array_like
Denominator polynomial coefficients.
Returns
-------
z : ndarray
Zeros of the transfer function.
p : ndarray
Poles of the transfer function.
k : float
System gain.
Notes
-----
If some values of `b` are too close to 0, they are removed. In that case,
a BadCoefficients warning is emitted.
The `b` and `a` arrays are interpreted as coefficients for positive,
descending powers of the transfer function variable. So the inputs
:math:`b = [b_0, b_1, ..., b_M]` and :math:`a =[a_0, a_1, ..., a_N]`
can represent an analog filter of the form:
.. math::
H(s) = \frac
{b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M}
{a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N}
or a discrete-time filter of the form:
.. math::
H(z) = \frac
{b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M}
{a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N}
This "positive powers" form is found more commonly in controls
engineering. If `M` and `N` are equal (which is true for all filters
generated by the bilinear transform), then this happens to be equivalent
to the "negative powers" discrete-time form preferred in DSP:
.. math::
H(z) = \frac
{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}
{a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}}
Although this is true for common filters, remember that this is not true
in the general case. If `M` and `N` are not equal, the discrete-time
transfer function coefficients must first be converted to the "positive
powers" form before finding the poles and zeros.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :