Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.signal »

Fonction argrelmax - module scipy.signal

Signature de la fonction argrelmax

def argrelmax(data, axis=0, order=1, mode='clip') 

Description

argrelmax.__doc__

    Calculate the relative maxima of `data`.

    Parameters
    ----------
    data : ndarray
        Array in which to find the relative maxima.
    axis : int, optional
        Axis over which to select from `data`. Default is 0.
    order : int, optional
        How many points on each side to use for the comparison
        to consider ``comparator(n, n+x)`` to be True.
    mode : str, optional
        How the edges of the vector are treated.
        Available options are 'wrap' (wrap around) or 'clip' (treat overflow
        as the same as the last (or first) element).
        Default 'clip'. See `numpy.take`.

    Returns
    -------
    extrema : tuple of ndarrays
        Indices of the maxima in arrays of integers. ``extrema[k]`` is
        the array of indices of axis `k` of `data`. Note that the
        return value is a tuple even when `data` is 1-D.

    See Also
    --------
    argrelextrema, argrelmin, find_peaks

    Notes
    -----
    This function uses `argrelextrema` with np.greater as comparator. Therefore,
    it  requires a strict inequality on both sides of a value to consider it a
    maximum. This means flat maxima (more than one sample wide) are not detected.
    In case of 1-D `data` `find_peaks` can be used to detect all
    local maxima, including flat ones.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy.signal import argrelmax
    >>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
    >>> argrelmax(x)
    (array([3, 6]),)
    >>> y = np.array([[1, 2, 1, 2],
    ...               [2, 2, 0, 0],
    ...               [5, 3, 4, 4]])
    ...
    >>> argrelmax(y, axis=1)
    (array([0]), array([1]))