Module « scipy.signal »
Signature de la fonction bilinear_zpk
def bilinear_zpk(z, p, k, fs)
Description
bilinear_zpk.__doc__
Return a digital IIR filter from an analog one using a bilinear transform.
Transform a set of poles and zeros from the analog s-plane to the digital
z-plane using Tustin's method, which substitutes ``(z-1) / (z+1)`` for
``s``, maintaining the shape of the frequency response.
Parameters
----------
z : array_like
Zeros of the analog filter transfer function.
p : array_like
Poles of the analog filter transfer function.
k : float
System gain of the analog filter transfer function.
fs : float
Sample rate, as ordinary frequency (e.g., hertz). No prewarping is
done in this function.
Returns
-------
z : ndarray
Zeros of the transformed digital filter transfer function.
p : ndarray
Poles of the transformed digital filter transfer function.
k : float
System gain of the transformed digital filter.
See Also
--------
lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, lp2bs_zpk
bilinear
Notes
-----
.. versionadded:: 1.1.0
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> fs = 100
>>> bf = 2 * np.pi * np.array([7, 13])
>>> filts = signal.lti(*signal.butter(4, bf, btype='bandpass', analog=True,
... output='zpk'))
>>> filtz = signal.lti(*signal.bilinear_zpk(filts.zeros, filts.poles,
... filts.gain, fs))
>>> wz, hz = signal.freqz_zpk(filtz.zeros, filtz.poles, filtz.gain)
>>> ws, hs = signal.freqs_zpk(filts.zeros, filts.poles, filts.gain,
... worN=fs*wz)
>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hz).clip(1e-15)),
... label=r'$|H_z(e^{j \omega})|$')
>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hs).clip(1e-15)),
... label=r'$|H(j \omega)|$')
>>> plt.legend()
>>> plt.xlabel('Frequency [Hz]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.grid()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :