Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « scipy.signal »

Fonction freqz - module scipy.signal

Signature de la fonction freqz

def freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586, include_nyquist=False) 

Description

help(scipy.signal.freqz)

Compute the frequency response of a digital filter.

Given the M-order numerator `b` and N-order denominator `a` of a digital
filter, compute its frequency response::

             jw                 -jw              -jwM
    jw    B(e  )    b[0] + b[1]e    + ... + b[M]e
 H(e  ) = ------ = -----------------------------------
             jw                 -jw              -jwN
          A(e  )    a[0] + a[1]e    + ... + a[N]e

Parameters
----------
b : array_like
    Numerator of a linear filter. If `b` has dimension greater than 1,
    it is assumed that the coefficients are stored in the first dimension,
    and ``b.shape[1:]``, ``a.shape[1:]``, and the shape of the frequencies
    array must be compatible for broadcasting.
a : array_like
    Denominator of a linear filter. If `b` has dimension greater than 1,
    it is assumed that the coefficients are stored in the first dimension,
    and ``b.shape[1:]``, ``a.shape[1:]``, and the shape of the frequencies
    array must be compatible for broadcasting.
worN : {None, int, array_like}, optional
    If a single integer, then compute at that many frequencies (default is
    N=512). This is a convenient alternative to::

        np.linspace(0, fs if whole else fs/2, N, endpoint=include_nyquist)

    Using a number that is fast for FFT computations can result in
    faster computations (see Notes).

    If an array_like, compute the response at the frequencies given.
    These are in the same units as `fs`.
whole : bool, optional
    Normally, frequencies are computed from 0 to the Nyquist frequency,
    fs/2 (upper-half of unit-circle). If `whole` is True, compute
    frequencies from 0 to fs. Ignored if worN is array_like.
plot : callable
    A callable that takes two arguments. If given, the return parameters
    `w` and `h` are passed to plot. Useful for plotting the frequency
    response inside `freqz`.
fs : float, optional
    The sampling frequency of the digital system. Defaults to 2*pi
    radians/sample (so w is from 0 to pi).

    .. versionadded:: 1.2.0
include_nyquist : bool, optional
    If `whole` is False and `worN` is an integer, setting `include_nyquist`
    to True will include the last frequency (Nyquist frequency) and is
    otherwise ignored.

    .. versionadded:: 1.5.0

Returns
-------
w : ndarray
    The frequencies at which `h` was computed, in the same units as `fs`.
    By default, `w` is normalized to the range [0, pi) (radians/sample).
h : ndarray
    The frequency response, as complex numbers.

See Also
--------
freqz_zpk
freqz_sos

Notes
-----
Using Matplotlib's :func:`matplotlib.pyplot.plot` function as the callable
for `plot` produces unexpected results, as this plots the real part of the
complex transfer function, not the magnitude.
Try ``lambda w, h: plot(w, np.abs(h))``.

A direct computation via (R)FFT is used to compute the frequency response
when the following conditions are met:

1. An integer value is given for `worN`.
2. `worN` is fast to compute via FFT (i.e.,
   `next_fast_len(worN) <scipy.fft.next_fast_len>` equals `worN`).
3. The denominator coefficients are a single value (``a.shape[0] == 1``).
4. `worN` is at least as long as the numerator coefficients
   (``worN >= b.shape[0]``).
5. If ``b.ndim > 1``, then ``b.shape[-1] == 1``.

For long FIR filters, the FFT approach can have lower error and be much
faster than the equivalent direct polynomial calculation.

Examples
--------
>>> from scipy import signal
>>> import numpy as np
>>> taps, f_c = 80, 1.0  # number of taps and cut-off frequency
>>> b = signal.firwin(taps, f_c, window=('kaiser', 8), fs=2*np.pi)
>>> w, h = signal.freqz(b)

>>> import matplotlib.pyplot as plt
>>> fig, ax1 = plt.subplots(tight_layout=True)
>>> ax1.set_title(f"Frequency Response of {taps} tap FIR Filter" +
...               f"($f_c={f_c}$ rad/sample)")
>>> ax1.axvline(f_c, color='black', linestyle=':', linewidth=0.8)
>>> ax1.plot(w, 20 * np.log10(abs(h)), 'C0')
>>> ax1.set_ylabel("Amplitude in dB", color='C0')
>>> ax1.set(xlabel="Frequency in rad/sample", xlim=(0, np.pi))

>>> ax2 = ax1.twinx()
>>> phase = np.unwrap(np.angle(h))
>>> ax2.plot(w, phase, 'C1')
>>> ax2.set_ylabel('Phase [rad]', color='C1')
>>> ax2.grid(True)
>>> ax2.axis('tight')
>>> plt.show()

Broadcasting Examples

Suppose we have two FIR filters whose coefficients are stored in the
rows of an array with shape (2, 25). For this demonstration, we'll
use random data:

>>> rng = np.random.default_rng()
>>> b = rng.random((2, 25))

To compute the frequency response for these two filters with one call
to `freqz`, we must pass in ``b.T``, because `freqz` expects the first
axis to hold the coefficients. We must then extend the shape with a
trivial dimension of length 1 to allow broadcasting with the array
of frequencies.  That is, we pass in ``b.T[..., np.newaxis]``, which has
shape (25, 2, 1):

>>> w, h = signal.freqz(b.T[..., np.newaxis], worN=1024)
>>> w.shape
(1024,)
>>> h.shape
(2, 1024)

Now, suppose we have two transfer functions, with the same numerator
coefficients ``b = [0.5, 0.5]``. The coefficients for the two denominators
are stored in the first dimension of the 2-D array  `a`::

    a = [   1      1  ]
        [ -0.25, -0.5 ]

>>> b = np.array([0.5, 0.5])
>>> a = np.array([[1, 1], [-0.25, -0.5]])

Only `a` is more than 1-D. To make it compatible for
broadcasting with the frequencies, we extend it with a trivial dimension
in the call to `freqz`:

>>> w, h = signal.freqz(b, a[..., np.newaxis], worN=1024)
>>> w.shape
(1024,)
>>> h.shape
(2, 1024)



Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé