Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Calculates the lag / displacement indices array for 1D cross-correlation.
Parameters
----------
in1_size : int
First input size.
in2_size : int
Second input size.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output.
See the documentation `correlate` for more information.
See Also
--------
correlate : Compute the N-dimensional cross-correlation.
Returns
-------
lags : array
Returns an array containing cross-correlation lag/displacement indices.
Indices can be indexed with the np.argmax of the correlation to return
the lag/displacement.
Notes
-----
Cross-correlation for continuous functions :math:`f` and :math:`g` is
defined as:
.. math ::
\left ( f\star g \right )\left ( \tau \right )
\triangleq \int_{t_0}^{t_0 +T}
\overline{f\left ( t \right )}g\left ( t+\tau \right )dt
Where :math:`\tau` is defined as the displacement, also known as the lag.
Cross correlation for discrete functions :math:`f` and :math:`g` is
defined as:
.. math ::
\left ( f\star g \right )\left [ n \right ]
\triangleq \sum_{-\infty}^{\infty}
\overline{f\left [ m \right ]}g\left [ m+n \right ]
Where :math:`n` is the lag.
Examples
--------
Cross-correlation of a signal with its time-delayed self.
>>> from scipy import signal
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> x = rng.standard_normal(1000)
>>> y = np.concatenate([rng.standard_normal(100), x])
>>> correlation = signal.correlate(x, y, mode="full")
>>> lags = signal.correlation_lags(x.size, y.size, mode="full")
>>> lag = lags[np.argmax(correlation)]
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :