Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.signal »

Fonction dlsim - module scipy.signal

Signature de la fonction dlsim

def dlsim(system, u, t=None, x0=None) 

Description

dlsim.__doc__

    Simulate output of a discrete-time linear system.

    Parameters
    ----------
    system : tuple of array_like or instance of `dlti`
        A tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1: (instance of `dlti`)
            * 3: (num, den, dt)
            * 4: (zeros, poles, gain, dt)
            * 5: (A, B, C, D, dt)

    u : array_like
        An input array describing the input at each time `t` (interpolation is
        assumed between given times).  If there are multiple inputs, then each
        column of the rank-2 array represents an input.
    t : array_like, optional
        The time steps at which the input is defined.  If `t` is given, it
        must be the same length as `u`, and the final value in `t` determines
        the number of steps returned in the output.
    x0 : array_like, optional
        The initial conditions on the state vector (zero by default).

    Returns
    -------
    tout : ndarray
        Time values for the output, as a 1-D array.
    yout : ndarray
        System response, as a 1-D array.
    xout : ndarray, optional
        Time-evolution of the state-vector.  Only generated if the input is a
        `StateSpace` system.

    See Also
    --------
    lsim, dstep, dimpulse, cont2discrete

    Examples
    --------
    A simple integrator transfer function with a discrete time step of 1.0
    could be implemented as:

    >>> from scipy import signal
    >>> tf = ([1.0,], [1.0, -1.0], 1.0)
    >>> t_in = [0.0, 1.0, 2.0, 3.0]
    >>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
    >>> t_out, y = signal.dlsim(tf, u, t=t_in)
    >>> y.T
    array([[ 0.,  0.,  0.,  1.]])