Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.signal »
Signature de la fonction iircomb
def iircomb(w0, Q, ftype='notch', fs=2.0, *, pass_zero=False)
Description
help(scipy.signal.iircomb)
Design IIR notching or peaking digital comb filter.
A notching comb filter consists of regularly-spaced band-stop filters with
a narrow bandwidth (high quality factor). Each rejects a narrow frequency
band and leaves the rest of the spectrum little changed.
A peaking comb filter consists of regularly-spaced band-pass filters with
a narrow bandwidth (high quality factor). Each rejects components outside
a narrow frequency band.
Parameters
----------
w0 : float
The fundamental frequency of the comb filter (the spacing between its
peaks). This must evenly divide the sampling frequency. If `fs` is
specified, this is in the same units as `fs`. By default, it is
a normalized scalar that must satisfy ``0 < w0 < 1``, with
``w0 = 1`` corresponding to half of the sampling frequency.
Q : float
Quality factor. Dimensionless parameter that characterizes
notch filter -3 dB bandwidth ``bw`` relative to its center
frequency, ``Q = w0/bw``.
ftype : {'notch', 'peak'}
The type of comb filter generated by the function. If 'notch', then
the Q factor applies to the notches. If 'peak', then the Q factor
applies to the peaks. Default is 'notch'.
fs : float, optional
The sampling frequency of the signal. Default is 2.0.
pass_zero : bool, optional
If False (default), the notches (nulls) of the filter are centered on
frequencies [0, w0, 2*w0, ...], and the peaks are centered on the
midpoints [w0/2, 3*w0/2, 5*w0/2, ...]. If True, the peaks are centered
on [0, w0, 2*w0, ...] (passing zero frequency) and vice versa.
.. versionadded:: 1.9.0
Returns
-------
b, a : ndarray, ndarray
Numerator (``b``) and denominator (``a``) polynomials
of the IIR filter.
Raises
------
ValueError
If `w0` is less than or equal to 0 or greater than or equal to
``fs/2``, if `fs` is not divisible by `w0`, if `ftype`
is not 'notch' or 'peak'
See Also
--------
iirnotch
iirpeak
Notes
-----
For implementation details, see [1]_. The TF implementation of the
comb filter is numerically stable even at higher orders due to the
use of a single repeated pole, which won't suffer from precision loss.
References
----------
.. [1] Sophocles J. Orfanidis, "Introduction To Signal Processing",
Prentice-Hall, 1996, ch. 11, "Digital Filter Design"
Examples
--------
Design and plot notching comb filter at 20 Hz for a
signal sampled at 200 Hz, using quality factor Q = 30
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> fs = 200.0 # Sample frequency (Hz)
>>> f0 = 20.0 # Frequency to be removed from signal (Hz)
>>> Q = 30.0 # Quality factor
>>> # Design notching comb filter
>>> b, a = signal.iircomb(f0, Q, ftype='notch', fs=fs)
>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)
>>> response = abs(h)
>>> # To avoid divide by zero when graphing
>>> response[response == 0] = 1e-20
>>> # Plot
>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6), sharex=True)
>>> ax[0].plot(freq, 20*np.log10(abs(response)), color='blue')
>>> ax[0].set_title("Frequency Response")
>>> ax[0].set_ylabel("Amplitude [dB]", color='blue')
>>> ax[0].set_xlim([0, 100])
>>> ax[0].set_ylim([-30, 10])
>>> ax[0].grid(True)
>>> ax[1].plot(freq, (np.angle(h)*180/np.pi+180)%360 - 180, color='green')
>>> ax[1].set_ylabel("Phase [deg]", color='green')
>>> ax[1].set_xlabel("Frequency [Hz]")
>>> ax[1].set_xlim([0, 100])
>>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90])
>>> ax[1].set_ylim([-90, 90])
>>> ax[1].grid(True)
>>> plt.show()
Design and plot peaking comb filter at 250 Hz for a
signal sampled at 1000 Hz, using quality factor Q = 30
>>> fs = 1000.0 # Sample frequency (Hz)
>>> f0 = 250.0 # Frequency to be retained (Hz)
>>> Q = 30.0 # Quality factor
>>> # Design peaking filter
>>> b, a = signal.iircomb(f0, Q, ftype='peak', fs=fs, pass_zero=True)
>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)
>>> response = abs(h)
>>> # To avoid divide by zero when graphing
>>> response[response == 0] = 1e-20
>>> # Plot
>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6), sharex=True)
>>> ax[0].plot(freq, 20*np.log10(np.maximum(abs(h), 1e-5)), color='blue')
>>> ax[0].set_title("Frequency Response")
>>> ax[0].set_ylabel("Amplitude [dB]", color='blue')
>>> ax[0].set_xlim([0, 500])
>>> ax[0].set_ylim([-80, 10])
>>> ax[0].grid(True)
>>> ax[1].plot(freq, (np.angle(h)*180/np.pi+180)%360 - 180, color='green')
>>> ax[1].set_ylabel("Phase [deg]", color='green')
>>> ax[1].set_xlabel("Frequency [Hz]")
>>> ax[1].set_xlim([0, 500])
>>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90])
>>> ax[1].set_ylim([-90, 90])
>>> ax[1].grid(True)
>>> plt.show()
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :