Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « scipy.signal »

Fonction csd - module scipy.signal

Signature de la fonction csd

def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, average='mean') 

Description

help(scipy.signal.csd)

Estimate the cross power spectral density, Pxy, using Welch's method.

Parameters
----------
x : array_like
    Time series of measurement values
y : array_like
    Time series of measurement values
fs : float, optional
    Sampling frequency of the `x` and `y` time series. Defaults
    to 1.0.
window : str or tuple or array_like, optional
    Desired window to use. If `window` is a string or tuple, it is
    passed to `get_window` to generate the window values, which are
    DFT-even by default. See `get_window` for a list of windows and
    required parameters. If `window` is array_like it will be used
    directly as the window and its length must be nperseg. Defaults
    to a Hann window.
nperseg : int, optional
    Length of each segment. Defaults to None, but if window is str or
    tuple, is set to 256, and if window is array_like, is set to the
    length of the window.
noverlap: int, optional
    Number of points to overlap between segments. If `None`,
    ``noverlap = nperseg // 2``. Defaults to `None`.
nfft : int, optional
    Length of the FFT used, if a zero padded FFT is desired. If
    `None`, the FFT length is `nperseg`. Defaults to `None`.
detrend : str or function or `False`, optional
    Specifies how to detrend each segment. If `detrend` is a
    string, it is passed as the `type` argument to the `detrend`
    function. If it is a function, it takes a segment and returns a
    detrended segment. If `detrend` is `False`, no detrending is
    done. Defaults to 'constant'.
return_onesided : bool, optional
    If `True`, return a one-sided spectrum for real data. If
    `False` return a two-sided spectrum. Defaults to `True`, but for
    complex data, a two-sided spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
    Selects between computing the cross spectral density ('density')
    where `Pxy` has units of V**2/Hz and computing the cross spectrum
    ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
    measured in V and `fs` is measured in Hz. Defaults to 'density'
axis : int, optional
    Axis along which the CSD is computed for both inputs; the
    default is over the last axis (i.e. ``axis=-1``).
average : { 'mean', 'median' }, optional
    Method to use when averaging periodograms. If the spectrum is
    complex, the average is computed separately for the real and
    imaginary parts. Defaults to 'mean'.

    .. versionadded:: 1.2.0

Returns
-------
f : ndarray
    Array of sample frequencies.
Pxy : ndarray
    Cross spectral density or cross power spectrum of x,y.

See Also
--------
periodogram: Simple, optionally modified periodogram
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
welch: Power spectral density by Welch's method. [Equivalent to
       csd(x,x)]
coherence: Magnitude squared coherence by Welch's method.

Notes
-----
By convention, Pxy is computed with the conjugate FFT of X
multiplied by the FFT of Y.

If the input series differ in length, the shorter series will be
zero-padded to match.

An appropriate amount of overlap will depend on the choice of window
and on your requirements. For the default Hann window an overlap of
50% is a reasonable trade off between accurately estimating the
signal power, while not over counting any of the data. Narrower
windows may require a larger overlap.

Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
for a discussion of the scalings of a spectral density and an (amplitude) spectrum.

.. versionadded:: 0.16.0

References
----------
.. [1] P. Welch, "The use of the fast Fourier transform for the
       estimation of power spectra: A method based on time averaging
       over short, modified periodograms", IEEE Trans. Audio
       Electroacoust. vol. 15, pp. 70-73, 1967.
.. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of
       Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975

Examples
--------
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Generate two test signals with some common features.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

Compute and plot the magnitude of the cross spectral density.

>>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, np.abs(Pxy))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('CSD [V**2/Hz]')
>>> plt.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé