Module « scipy.signal »
Signature de la fonction residue
def residue(b, a, tol=0.001, rtype='avg')
Description
residue.__doc__
Compute partial-fraction expansion of b(s) / a(s).
If `M` is the degree of numerator `b` and `N` the degree of denominator
`a`::
b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = ------------------------------------------
a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]
then the partial-fraction expansion H(s) is defined as::
r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])
If there are any repeated roots (closer together than `tol`), then H(s)
has terms like::
r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n
This function is used for polynomials in positive powers of s or z,
such as analog filters or digital filters in controls engineering. For
negative powers of z (typical for digital filters in DSP), use `residuez`.
See Notes for details about the algorithm.
Parameters
----------
b : array_like
Numerator polynomial coefficients.
a : array_like
Denominator polynomial coefficients.
tol : float, optional
The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See `unique_roots`
for further details.
rtype : {'avg', 'min', 'max'}, optional
Method for computing a root to represent a group of identical roots.
Default is 'avg'. See `unique_roots` for further details.
Returns
-------
r : ndarray
Residues corresponding to the poles. For repeated poles, the residues
are ordered to correspond to ascending by power fractions.
p : ndarray
Poles ordered by magnitude in ascending order.
k : ndarray
Coefficients of the direct polynomial term.
See Also
--------
invres, residuez, numpy.poly, unique_roots
Notes
-----
The "deflation through subtraction" algorithm is used for
computations --- method 6 in [1]_.
The form of partial fraction expansion depends on poles multiplicity in
the exact mathematical sense. However there is no way to exactly
determine multiplicity of roots of a polynomial in numerical computing.
Thus you should think of the result of `residue` with given `tol` as
partial fraction expansion computed for the denominator composed of the
computed poles with empirically determined multiplicity. The choice of
`tol` can drastically change the result if there are close poles.
References
----------
.. [1] J. F. Mahoney, B. D. Sivazlian, "Partial fractions expansion: a
review of computational methodology and efficiency", Journal of
Computational and Applied Mathematics, Vol. 9, 1983.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :