Vous êtes un professionnel et vous avez besoin d'une formation ?
		Mise en oeuvre d'IHM
avec Qt et PySide6
		Voir le programme détaillé	
	
	
            Module « scipy.signal »
            
Signature de la fonction chebwin 
def chebwin(*args, **kwargs) 
Description
chebwin.__doc__
Return a Dolph-Chebyshev window.
    .. warning:: scipy.signal.chebwin is deprecated,
                 use scipy.signal.windows.chebwin instead.
    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    at : float
        Attenuation (in dB).
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.
    Returns
    -------
    w : ndarray
        The window, with the maximum value always normalized to 1
    Notes
    -----
    This window optimizes for the narrowest main lobe width for a given order
    `M` and sidelobe equiripple attenuation `at`, using Chebyshev
    polynomials.  It was originally developed by Dolph to optimize the
    directionality of radio antenna arrays.
    Unlike most windows, the Dolph-Chebyshev is defined in terms of its
    frequency response:
    .. math:: W(k) = \frac
              {\cos\{M \cos^{-1}[\beta \cos(\frac{\pi k}{M})]\}}
              {\cosh[M \cosh^{-1}(\beta)]}
    where
    .. math:: \beta = \cosh \left [\frac{1}{M}
              \cosh^{-1}(10^\frac{A}{20}) \right ]
    and 0 <= abs(k) <= M-1. A is the attenuation in decibels (`at`).
    The time domain window is then generated using the IFFT, so
    power-of-two `M` are the fastest to generate, and prime number `M` are
    the slowest.
    The equiripple condition in the frequency domain creates impulses in the
    time domain, which appear at the ends of the window.
    References
    ----------
    .. [1] C. Dolph, "A current distribution for broadside arrays which
           optimizes the relationship between beam width and side-lobe level",
           Proceedings of the IEEE, Vol. 34, Issue 6
    .. [2] Peter Lynch, "The Dolph-Chebyshev Window: A Simple Optimal Filter",
           American Meteorological Society (April 1997)
           http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf
    .. [3] F. J. Harris, "On the use of windows for harmonic analysis with the
           discrete Fourier transforms", Proceedings of the IEEE, Vol. 66,
           No. 1, January 1978
    Examples
    --------
    Plot the window and its frequency response:
    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt
    >>> window = signal.windows.chebwin(51, at=100)
    >>> plt.plot(window)
    >>> plt.title("Dolph-Chebyshev window (100 dB)")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")
    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    
                      
            
	
	
	
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Sensibilisation àl'Intelligence Artificielle
		Voir le programme détaillé	
	
	
             
            
         
        
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :