Module « numpy.matlib »
Classe « recarray »
Informations générales
Héritage
builtins.object
ndarray
recarray
Définition
class recarray(ndarray):
Description [extrait de recarray.__doc__]
Construct an ndarray that allows field access using attributes.
Arrays may have a data-types containing fields, analogous
to columns in a spread sheet. An example is ``[(x, int), (y, float)]``,
where each entry in the array is a pair of ``(int, float)``. Normally,
these attributes are accessed using dictionary lookups such as ``arr['x']``
and ``arr['y']``. Record arrays allow the fields to be accessed as members
of the array, using ``arr.x`` and ``arr.y``.
Parameters
----------
shape : tuple
Shape of output array.
dtype : data-type, optional
The desired data-type. By default, the data-type is determined
from `formats`, `names`, `titles`, `aligned` and `byteorder`.
formats : list of data-types, optional
A list containing the data-types for the different columns, e.g.
``['i4', 'f8', 'i4']``. `formats` does *not* support the new
convention of using types directly, i.e. ``(int, float, int)``.
Note that `formats` must be a list, not a tuple.
Given that `formats` is somewhat limited, we recommend specifying
`dtype` instead.
names : tuple of str, optional
The name of each column, e.g. ``('x', 'y', 'z')``.
buf : buffer, optional
By default, a new array is created of the given shape and data-type.
If `buf` is specified and is an object exposing the buffer interface,
the array will use the memory from the existing buffer. In this case,
the `offset` and `strides` keywords are available.
Other Parameters
----------------
titles : tuple of str, optional
Aliases for column names. For example, if `names` were
``('x', 'y', 'z')`` and `titles` is
``('x_coordinate', 'y_coordinate', 'z_coordinate')``, then
``arr['x']`` is equivalent to both ``arr.x`` and ``arr.x_coordinate``.
byteorder : {'<', '>', '='}, optional
Byte-order for all fields.
aligned : bool, optional
Align the fields in memory as the C-compiler would.
strides : tuple of ints, optional
Buffer (`buf`) is interpreted according to these strides (strides
define how many bytes each array element, row, column, etc.
occupy in memory).
offset : int, optional
Start reading buffer (`buf`) from this offset onwards.
order : {'C', 'F'}, optional
Row-major (C-style) or column-major (Fortran-style) order.
Returns
-------
rec : recarray
Empty array of the given shape and type.
See Also
--------
core.records.fromrecords : Construct a record array from data.
record : fundamental data-type for `recarray`.
format_parser : determine a data-type from formats, names, titles.
Notes
-----
This constructor can be compared to ``empty``: it creates a new record
array but does not fill it with data. To create a record array from data,
use one of the following methods:
1. Create a standard ndarray and convert it to a record array,
using ``arr.view(np.recarray)``
2. Use the `buf` keyword.
3. Use `np.rec.fromrecords`.
Examples
--------
Create an array with two fields, ``x`` and ``y``:
>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', '<f8'), ('y', '<i8')])
>>> x
array([(1., 2), (3., 4)], dtype=[('x', '<f8'), ('y', '<i8')])
>>> x['x']
array([1., 3.])
View the array as a record array:
>>> x = x.view(np.recarray)
>>> x.x
array([1., 3.])
>>> x.y
array([2, 4])
Create a new, empty record array:
>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)]) #doctest: +SKIP
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])
Constructeur(s)
__new__(subtype, shape, dtype=None, buf=None, offset=0, strides=None, formats=None, names=None, titles=None, byteorder=None, aligned=False, order='C') |
|
Liste des attributs statiques
Attributs statiques hérités de la classe ndarray
base, ctypes, data, dtype, flags, flat, imag, itemsize, nbytes, ndim, real, shape, size, strides, T
Opérateurs hérités de la classe ndarray
__add__,
__and__,
__contains__,
__delitem__,
__eq__,
__floordiv__,
__ge__,
__gt__,
__iadd__,
__iand__,
__ifloordiv__,
__ilshift__,
__imatmul__,
__imod__,
__imul__,
__invert__,
__ior__,
__ipow__,
__irshift__,
__isub__,
__itruediv__,
__ixor__,
__le__,
__lshift__,
__lt__,
__matmul__,
__mod__,
__mul__,
__ne__,
__neg__,
__or__,
__pos__,
__pow__,
__radd__,
__rand__,
__rfloordiv__,
__rlshift__,
__rmod__,
__rmul__,
__ror__,
__rpow__,
__rrshift__,
__rshift__,
__rsub__,
__rtruediv__,
__rxor__,
__setitem__,
__sub__,
__truediv__,
__xor__
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe ndarray
__abs__,
__array__,
__array_function__,
__array_prepare__,
__array_ufunc__,
__array_wrap__,
__bool__,
__complex__,
__copy__,
__deepcopy__,
__divmod__,
__float__,
__format__,
__index__,
__init_subclass__,
__int__,
__iter__,
__len__,
__rdivmod__,
__reduce__,
__reduce_ex__,
__rmatmul__,
__setstate__,
__sizeof__,
__str__,
__subclasshook__,
all,
any,
argmax,
argmin,
argpartition,
argsort,
astype,
byteswap,
choose,
clip,
compress,
conj,
conjugate,
copy,
cumprod,
cumsum,
diagonal,
dot,
dump,
dumps,
fill,
flatten,
getfield,
item,
itemset,
max,
mean,
min,
newbyteorder,
nonzero,
partition,
prod,
ptp,
put,
ravel,
repeat,
reshape,
resize,
round,
searchsorted,
setfield,
setflags,
sort,
squeeze,
std,
sum,
swapaxes,
take,
tobytes,
tofile,
tolist,
tostring,
trace,
transpose,
var,
view
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__hash__,
__init_subclass__,
__reduce__,
__reduce_ex__,
__sizeof__,
__str__,
__subclasshook__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :