Module « numpy.matlib »
Signature de la fonction exp
Description
exp.__doc__
exp(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Calculate the exponential of all elements in the input array.
Parameters
----------
x : array_like
Input values.
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
out : ndarray or scalar
Output array, element-wise exponential of `x`.
This is a scalar if `x` is a scalar.
See Also
--------
expm1 : Calculate ``exp(x) - 1`` for all elements in the array.
exp2 : Calculate ``2**x`` for all elements in the array.
Notes
-----
The irrational number ``e`` is also known as Euler's number. It is
approximately 2.718281, and is the base of the natural logarithm,
``ln`` (this means that, if :math:`x = \ln y = \log_e y`,
then :math:`e^x = y`. For real input, ``exp(x)`` is always positive.
For complex arguments, ``x = a + ib``, we can write
:math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already
known (it is the real argument, described above). The second term,
:math:`e^{ib}`, is :math:`\cos b + i \sin b`, a function with
magnitude 1 and a periodic phase.
References
----------
.. [1] Wikipedia, "Exponential function",
https://en.wikipedia.org/wiki/Exponential_function
.. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69,
http://www.math.sfu.ca/~cbm/aands/page_69.htm
Examples
--------
Plot the magnitude and phase of ``exp(x)`` in the complex plane:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)
>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)')
>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :