Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Module « numpy.matlib »

Fonction load - module numpy.matlib

Signature de la fonction load

def load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, encoding='ASCII', *, max_header_size=10000) 

Description

help(numpy.matlib.load)

Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files.

.. warning:: Loading files that contain object arrays uses the ``pickle``
             module, which is not secure against erroneous or maliciously
             constructed data. Consider passing ``allow_pickle=False`` to
             load data that is known not to contain object arrays for the
             safer handling of untrusted sources.

Parameters
----------
file : file-like object, string, or pathlib.Path
    The file to read. File-like objects must support the
    ``seek()`` and ``read()`` methods and must always
    be opened in binary mode.  Pickled files require that the
    file-like object support the ``readline()`` method as well.
mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional
    If not None, then memory-map the file, using the given mode (see
    `numpy.memmap` for a detailed description of the modes).  A
    memory-mapped array is kept on disk. However, it can be accessed
    and sliced like any ndarray.  Memory mapping is especially useful
    for accessing small fragments of large files without reading the
    entire file into memory.
allow_pickle : bool, optional
    Allow loading pickled object arrays stored in npy files. Reasons for
    disallowing pickles include security, as loading pickled data can
    execute arbitrary code. If pickles are disallowed, loading object
    arrays will fail. Default: False
fix_imports : bool, optional
    Only useful when loading Python 2 generated pickled files on Python 3,
    which includes npy/npz files containing object arrays. If `fix_imports`
    is True, pickle will try to map the old Python 2 names to the new names
    used in Python 3.
encoding : str, optional
    What encoding to use when reading Python 2 strings. Only useful when
    loading Python 2 generated pickled files in Python 3, which includes
    npy/npz files containing object arrays. Values other than 'latin1',
    'ASCII', and 'bytes' are not allowed, as they can corrupt numerical
    data. Default: 'ASCII'
max_header_size : int, optional
    Maximum allowed size of the header.  Large headers may not be safe
    to load securely and thus require explicitly passing a larger value.
    See :py:func:`ast.literal_eval()` for details.
    This option is ignored when `allow_pickle` is passed.  In that case
    the file is by definition trusted and the limit is unnecessary.

Returns
-------
result : array, tuple, dict, etc.
    Data stored in the file. For ``.npz`` files, the returned instance
    of NpzFile class must be closed to avoid leaking file descriptors.

Raises
------
OSError
    If the input file does not exist or cannot be read.
UnpicklingError
    If ``allow_pickle=True``, but the file cannot be loaded as a pickle.
ValueError
    The file contains an object array, but ``allow_pickle=False`` given.
EOFError
    When calling ``np.load`` multiple times on the same file handle,
    if all data has already been read

See Also
--------
save, savez, savez_compressed, loadtxt
memmap : Create a memory-map to an array stored in a file on disk.
lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.

Notes
-----
- If the file contains pickle data, then whatever object is stored
  in the pickle is returned.
- If the file is a ``.npy`` file, then a single array is returned.
- If the file is a ``.npz`` file, then a dictionary-like object is
  returned, containing ``{filename: array}`` key-value pairs, one for
  each file in the archive.
- If the file is a ``.npz`` file, the returned value supports the
  context manager protocol in a similar fashion to the open function::

    with load('foo.npz') as data:
        a = data['a']

  The underlying file descriptor is closed when exiting the 'with'
  block.

Examples
--------
>>> import numpy as np

Store data to disk, and load it again:

>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
>>> np.load('/tmp/123.npy')
array([[1, 2, 3],
       [4, 5, 6]])

Store compressed data to disk, and load it again:

>>> a=np.array([[1, 2, 3], [4, 5, 6]])
>>> b=np.array([1, 2])
>>> np.savez('/tmp/123.npz', a=a, b=b)
>>> data = np.load('/tmp/123.npz')
>>> data['a']
array([[1, 2, 3],
       [4, 5, 6]])
>>> data['b']
array([1, 2])
>>> data.close()

Mem-map the stored array, and then access the second row
directly from disk:

>>> X = np.load('/tmp/123.npy', mmap_mode='r')
>>> X[1, :]
memmap([4, 5, 6])



Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé