Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « numpy.matlib »

Fonction cumprod - module numpy.matlib

Signature de la fonction cumprod

def cumprod(a, axis=None, dtype=None, out=None) 

Description

help(numpy.matlib.cumprod)

Return the cumulative product of elements along a given axis.

Parameters
----------
a : array_like
    Input array.
axis : int, optional
    Axis along which the cumulative product is computed.  By default
    the input is flattened.
dtype : dtype, optional
    Type of the returned array, as well as of the accumulator in which
    the elements are multiplied.  If *dtype* is not specified, it
    defaults to the dtype of `a`, unless `a` has an integer dtype with
    a precision less than that of the default platform integer.  In
    that case, the default platform integer is used instead.
out : ndarray, optional
    Alternative output array in which to place the result. It must
    have the same shape and buffer length as the expected output
    but the type of the resulting values will be cast if necessary.

Returns
-------
cumprod : ndarray
    A new array holding the result is returned unless `out` is
    specified, in which case a reference to out is returned.

See Also
--------
cumulative_prod : Array API compatible alternative for ``cumprod``.
:ref:`ufuncs-output-type`

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples
--------
>>> import numpy as np
>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
...               # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([   1.,    2.,    6.,   24.,  120.,  720.])

The cumulative product for each column (i.e., over the rows) of `a`:

>>> np.cumprod(a, axis=0)
array([[ 1,  2,  3],
       [ 4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of `a`:

>>> np.cumprod(a,axis=1)
array([[  1,   2,   6],
       [  4,  20, 120]])



Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé