Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé
Module « numpy.matlib »

Fonction compress - module numpy.matlib

Signature de la fonction compress

def compress(condition, a, axis=None, out=None) 

Description

help(numpy.matlib.compress)

Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in
`output` for each index where `condition` evaluates to True. When
working on a 1-D array, `compress` is equivalent to `extract`.

Parameters
----------
condition : 1-D array of bools
    Array that selects which entries to return. If len(condition)
    is less than the size of `a` along the given axis, then output is
    truncated to the length of the condition array.
a : array_like
    Array from which to extract a part.
axis : int, optional
    Axis along which to take slices. If None (default), work on the
    flattened array.
out : ndarray, optional
    Output array.  Its type is preserved and it must be of the right
    shape to hold the output.

Returns
-------
compressed_array : ndarray
    A copy of `a` without the slices along axis for which `condition`
    is false.

See Also
--------
take, choose, diag, diagonal, select
ndarray.compress : Equivalent method in ndarray
extract : Equivalent method when working on 1-D arrays
:ref:`ufuncs-output-type`

Examples
--------
>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4], [5, 6]])
>>> a
array([[1, 2],
       [3, 4],
       [5, 6]])
>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0)
array([[3, 4],
       [5, 6]])
>>> np.compress([False, True], a, axis=1)
array([[2],
       [4],
       [6]])

Working on the flattened array does not return slices along an axis but
selects elements.

>>> np.compress([False, True], a)
array([2])



Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé