Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé

Contenu du module « numpy.matlib »

Liste des classes du module numpy.matlib

Nom de la classe Description
bool Boolean type (True or False), stored as a byte. [extrait de bool.__doc__]
broadcast Produce an object that mimics broadcasting. [extrait de broadcast.__doc__]
busdaycalendar busdaycalendar(weekmask='1111100', holidays=None) [extrait de busdaycalendar.__doc__]
bytes_ A byte string. [extrait de bytes_.__doc__]
character Abstract base class of all character string scalar types. [extrait de character.__doc__]
clongdouble Complex number type composed of two extended-precision floating-point [extrait de clongdouble.__doc__]
complex128 Complex number type composed of two double-precision floating-point [extrait de complex128.__doc__]
complex64 Complex number type composed of two single-precision floating-point [extrait de complex64.__doc__]
complexfloating Abstract base class of all complex number scalar types that are made up of [extrait de complexfloating.__doc__]
datetime64 If created from a 64-bit integer, it represents an offset from [extrait de datetime64.__doc__]
dtype dtype(dtype, align=False, copy=False, [metadata]) [extrait de dtype.__doc__]
errstate
finfo
flatiter Flat iterator object to iterate over arrays. [extrait de flatiter.__doc__]
flexible Abstract base class of all scalar types without predefined length. [extrait de flexible.__doc__]
float16 Half-precision floating-point number type. [extrait de float16.__doc__]
float32 Single-precision floating-point number type, compatible with C ``float``. [extrait de float32.__doc__]
float64 Double-precision floating-point number type, compatible with Python [extrait de float64.__doc__]
floating Abstract base class of all floating-point scalar types. [extrait de floating.__doc__]
generic Base class for numpy scalar types. [extrait de generic.__doc__]
iinfo
inexact Abstract base class of all numeric scalar types with a (potentially) [extrait de inexact.__doc__]
int16 Signed integer type, compatible with C ``short``. [extrait de int16.__doc__]
int32
int64 Default signed integer type, 64bit on 64bit systems and 32bit on 32bit [extrait de int64.__doc__]
int8 Signed integer type, compatible with C ``char``. [extrait de int8.__doc__]
intc Signed integer type, compatible with C ``int``. [extrait de intc.__doc__]
integer Abstract base class of all integer scalar types. [extrait de integer.__doc__]
longdouble Extended-precision floating-point number type, compatible with C [extrait de longdouble.__doc__]
matrix
memmap Create a memory-map to an array stored in a *binary* file on disk. [extrait de memmap.__doc__]
ndarray ndarray(shape, dtype=float, buffer=None, offset=0, [extrait de ndarray.__doc__]
ndenumerate
ndindex
nditer nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', [extrait de nditer.__doc__]
number Abstract base class of all numeric scalar types. [extrait de number.__doc__]
object_ Any Python object. [extrait de object_.__doc__]
poly1d
recarray Construct an ndarray that allows field access using attributes. [extrait de recarray.__doc__]
record A data-type scalar that allows field access as attribute lookup. [extrait de record.__doc__]
signedinteger Abstract base class of all signed integer scalar types. [extrait de signedinteger.__doc__]
str_ A unicode string. [extrait de str_.__doc__]
timedelta64 A timedelta stored as a 64-bit integer. [extrait de timedelta64.__doc__]
ufunc Functions that operate element by element on whole arrays. [extrait de ufunc.__doc__]
uint16 Unsigned integer type, compatible with C ``unsigned short``. [extrait de uint16.__doc__]
uint32
uint64 Unsigned signed integer type, 64bit on 64bit systems and 32bit on 32bit [extrait de uint64.__doc__]
uint8 Unsigned integer type, compatible with C ``unsigned char``. [extrait de uint8.__doc__]
uintc Unsigned integer type, compatible with C ``unsigned int``. [extrait de uintc.__doc__]
unsignedinteger Abstract base class of all unsigned integer scalar types. [extrait de unsignedinteger.__doc__]
vectorize
void np.void(length_or_data, /, dtype=None) [extrait de void.__doc__]

Liste des fonctions du module numpy.matlib

Signature de la fonction Description
absolute(*args, **kwargs) absolute(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de absolute.__doc__]
add(*args, **kwargs) add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de add.__doc__]
all(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)
allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
amin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
angle(z, deg=False)
any(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)
append(arr, values, axis=None)
apply_along_axis(func1d, axis, arr, *args, **kwargs)
apply_over_axes(func, a, axes)
arange arange([start,] stop[, step,], dtype=None, *, device=None, like=None) [extrait de arange.__doc__]
arccos(*args, **kwargs) arccos(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de arccos.__doc__]
arccosh(*args, **kwargs) arccosh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de arccosh.__doc__]
arcsin(*args, **kwargs) arcsin(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de arcsin.__doc__]
arcsinh(*args, **kwargs) arcsinh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de arcsinh.__doc__]
arctan(*args, **kwargs) arctan(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de arctan.__doc__]
arctan2(*args, **kwargs) arctan2(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de arctan2.__doc__]
arctanh(*args, **kwargs) arctanh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de arctanh.__doc__]
argmax(a, axis=None, out=None, *, keepdims=<no value>)
argmin(a, axis=None, out=None, *, keepdims=<no value>)
argpartition(a, kth, axis=-1, kind='introselect', order=None)
argsort(a, axis=-1, kind=None, order=None, *, stable=None)
argwhere(a)
around(a, decimals=0, out=None)
array array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, [extrait de array.__doc__]
array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix='', style=<no value>, formatter=None, threshold=None, edgeitems=None, sign=None, floatmode=None, suffix='', *, legacy=None)
array_equal(a1, a2, equal_nan=False)
array_equiv(a1, a2)
array_repr(arr, max_line_width=None, precision=None, suppress_small=None)
array_split(ary, indices_or_sections, axis=0)
array_str(a, max_line_width=None, precision=None, suppress_small=None)
asanyarray asanyarray(a, dtype=None, order=None, *, device=None, copy=None, like=None) [extrait de asanyarray.__doc__]
asarray asarray(a, dtype=None, order=None, *, device=None, copy=None, like=None) [extrait de asarray.__doc__]
asarray_chkfinite(a, dtype=None, order=None) Convert the input to an array, checking for NaNs or Infs. [extrait de asarray_chkfinite.__doc__]
ascontiguousarray ascontiguousarray(a, dtype=None, *, like=None) [extrait de ascontiguousarray.__doc__]
asfortranarray asfortranarray(a, dtype=None, *, like=None) [extrait de asfortranarray.__doc__]
asmatrix(data, dtype=None)
astype(x, dtype, /, *, copy=True, device=None)
atleast_1d(*arys)
atleast_2d(*arys)
atleast_3d(*arys)
average(a, axis=None, weights=None, returned=False, *, keepdims=<no value>)
bartlett(M)
base_repr(number, base=2, padding=0)
binary_repr(num, width=None)
bincount
bitwise_and(*args, **kwargs) bitwise_and(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de bitwise_and.__doc__]
bitwise_count(*args, **kwargs) bitwise_count(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de bitwise_count.__doc__]
bitwise_or(*args, **kwargs) bitwise_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de bitwise_or.__doc__]
bitwise_xor(*args, **kwargs) bitwise_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de bitwise_xor.__doc__]
blackman(M)
block(arrays)
bmat(obj, ldict=None, gdict=None)
broadcast_arrays(*args, subok=False)
broadcast_shapes(*args)
broadcast_to(array, shape, subok=False) Broadcast an array to a new shape. [extrait de broadcast_to.__doc__]
busday_count
busday_offset
can_cast
cbrt(*args, **kwargs) cbrt(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de cbrt.__doc__]
ceil(*args, **kwargs) ceil(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de ceil.__doc__]
choose(a, choices, out=None, mode='raise')
clip(a, a_min=<no value>, a_max=<no value>, out=None, *, min=<no value>, max=<no value>, **kwargs)
column_stack(tup)
common_type(*arrays)
compress(condition, a, axis=None, out=None)
concatenate
conjugate(*args, **kwargs) conjugate(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de conjugate.__doc__]
convolve(a, v, mode='full')
copy(a, order='K', subok=False)
copysign(*args, **kwargs) copysign(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de copysign.__doc__]
copyto
corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>, *, dtype=None)
correlate(a, v, mode='valid')
cos(*args, **kwargs) cos(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de cos.__doc__]
cosh(*args, **kwargs) cosh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de cosh.__doc__]
count_nonzero(a, axis=None, *, keepdims=False)
cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None, *, dtype=None)
cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)
cumprod(a, axis=None, dtype=None, out=None)
cumsum(a, axis=None, dtype=None, out=None)
cumulative_prod(x, /, *, axis=None, dtype=None, out=None, include_initial=False)
cumulative_sum(x, /, *, axis=None, dtype=None, out=None, include_initial=False)
datetime_as_string
datetime_data datetime_data(dtype, /) [extrait de datetime_data.__doc__]
deg2rad(*args, **kwargs) deg2rad(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de deg2rad.__doc__]
degrees(*args, **kwargs) degrees(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de degrees.__doc__]
delete(arr, obj, axis=None)
diag(v, k=0)
diag_indices(n, ndim=2)
diag_indices_from(arr)
diagflat(v, k=0)
diagonal(a, offset=0, axis1=0, axis2=1)
diff(a, n=1, axis=-1, prepend=<no value>, append=<no value>)
digitize(x, bins, right=False)
divide(*args, **kwargs) divide(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de divide.__doc__]
divmod(*args, **kwargs) divmod(x1, x2[, out1, out2], / [, out=(None, None)], *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de divmod.__doc__]
dot
dsplit(ary, indices_or_sections)
dstack(tup)
ediff1d(ary, to_end=None, to_begin=None)
einsum(*operands, out=None, optimize=False, **kwargs)
einsum_path(*operands, optimize='greedy', einsum_call=False)
empty(shape, dtype=None, order='C') Return a new matrix of given shape and type, without initializing entries. [extrait de empty.__doc__]
empty_like
equal(*args, **kwargs) equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de equal.__doc__]
exp(*args, **kwargs) exp(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de exp.__doc__]
exp2(*args, **kwargs) exp2(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de exp2.__doc__]
expand_dims(a, axis)
expm1(*args, **kwargs) expm1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de expm1.__doc__]
extract(condition, arr)
eye(n, M=None, k=0, dtype=<class 'float'>, order='C')
fabs(*args, **kwargs) fabs(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de fabs.__doc__]
fill_diagonal(a, val, wrap=False) Fill the main diagonal of the given array of any dimensionality. [extrait de fill_diagonal.__doc__]
fix(x, out=None)
flatnonzero(a)
flip(m, axis=None)
fliplr(m)
flipud(m)
float_power(*args, **kwargs) float_power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de float_power.__doc__]
floor(*args, **kwargs) floor(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de floor.__doc__]
floor_divide(*args, **kwargs) floor_divide(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de floor_divide.__doc__]
fmax(*args, **kwargs) fmax(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de fmax.__doc__]
fmin(*args, **kwargs) fmin(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de fmin.__doc__]
fmod(*args, **kwargs) fmod(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de fmod.__doc__]
format_float_positional(x, precision=None, unique=True, fractional=True, trim='k', sign=False, pad_left=None, pad_right=None, min_digits=None)
format_float_scientific(x, precision=None, unique=True, trim='k', sign=False, pad_left=None, exp_digits=None, min_digits=None)
frexp(*args, **kwargs) frexp(x[, out1, out2], / [, out=(None, None)], *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de frexp.__doc__]
from_dlpack from_dlpack(x, /, *, device=None, copy=None) [extrait de from_dlpack.__doc__]
frombuffer frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None) [extrait de frombuffer.__doc__]
fromfile fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None) [extrait de fromfile.__doc__]
fromfunction(function, shape, *, dtype=<class 'float'>, like=None, **kwargs)
fromiter fromiter(iter, dtype, count=-1, *, like=None) [extrait de fromiter.__doc__]
frompyfunc frompyfunc(func, /, nin, nout, *[, identity]) [extrait de frompyfunc.__doc__]
fromregex(file, regexp, dtype, encoding=None)
fromstring fromstring(string, dtype=float, count=-1, *, sep, like=None) [extrait de fromstring.__doc__]
full(shape, fill_value, dtype=None, order='C', *, device=None, like=None)
full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None, *, device=None)
gcd(*args, **kwargs) gcd(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de gcd.__doc__]
genfromtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=" !#$%&'()*+,-./:;<=>?@[\\]^{|}~", replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None, encoding=None, *, ndmin=0, like=None)
geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0)
get_include()
get_printoptions()
getbufsize()
geterr()
geterrcall()
gradient(f, *varargs, axis=None, edge_order=1)
greater(*args, **kwargs) greater(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de greater.__doc__]
greater_equal(*args, **kwargs) greater_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de greater_equal.__doc__]
hamming(M)
hanning(M)
heaviside(*args, **kwargs) heaviside(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de heaviside.__doc__]
histogram(a, bins=10, range=None, density=None, weights=None)
histogram2d(x, y, bins=10, range=None, density=None, weights=None)
histogram_bin_edges(a, bins=10, range=None, weights=None)
histogramdd(sample, bins=10, range=None, density=None, weights=None)
hsplit(ary, indices_or_sections)
hstack(tup, *, dtype=None, casting='same_kind')
hypot(*args, **kwargs) hypot(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de hypot.__doc__]
i0(x)
identity(n, dtype=None)
imag(val)
in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None)
indices(dimensions, dtype=<class 'int'>, sparse=False)
info(object=None, maxwidth=76, output=None, toplevel='numpy')
inner
insert(arr, obj, values, axis=None)
interp(x, xp, fp, left=None, right=None, period=None)
intersect1d(ar1, ar2, assume_unique=False, return_indices=False)
invert(*args, **kwargs) invert(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de invert.__doc__]
is_busday
isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
iscomplex(x)
iscomplexobj(x)
isdtype(dtype, kind)
isfinite(*args, **kwargs) isfinite(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de isfinite.__doc__]
isfortran(a)
isin(element, test_elements, assume_unique=False, invert=False, *, kind=None)
isinf(*args, **kwargs) isinf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de isinf.__doc__]
isnan(*args, **kwargs) isnan(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de isnan.__doc__]
isnat(*args, **kwargs) isnat(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de isnat.__doc__]
isneginf(x, out=None)
isposinf(x, out=None)
isreal(x)
isrealobj(x)
isscalar(element)
issubdtype(arg1, arg2)
iterable(y)
ix_(*args)
kaiser(M, beta)
kron(a, b)
lcm(*args, **kwargs) lcm(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de lcm.__doc__]
ldexp(*args, **kwargs) ldexp(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de ldexp.__doc__]
left_shift(*args, **kwargs) left_shift(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de left_shift.__doc__]
less(*args, **kwargs) less(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de less.__doc__]
less_equal(*args, **kwargs) less_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de less_equal.__doc__]
lexsort
linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, *, device=None)
load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, encoding='ASCII', *, max_header_size=10000)
loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding=None, max_rows=None, *, quotechar=None, like=None)
log(*args, **kwargs) log(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de log.__doc__]
log10(*args, **kwargs) log10(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de log10.__doc__]
log1p(*args, **kwargs) log1p(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de log1p.__doc__]
log2(*args, **kwargs) log2(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de log2.__doc__]
logaddexp(*args, **kwargs) logaddexp(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de logaddexp.__doc__]
logaddexp2(*args, **kwargs) logaddexp2(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de logaddexp2.__doc__]
logical_and(*args, **kwargs) logical_and(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de logical_and.__doc__]
logical_not(*args, **kwargs) logical_not(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de logical_not.__doc__]
logical_or(*args, **kwargs) logical_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de logical_or.__doc__]
logical_xor(*args, **kwargs) logical_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de logical_xor.__doc__]
logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)
mask_indices(n, mask_func, k=0)
matmul(*args, **kwargs) matmul(x1, x2, /, out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes, axis]) [extrait de matmul.__doc__]
matrix_transpose(x)
matvec(*args, **kwargs) matvec(x1, x2, /, out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes, axis]) [extrait de matvec.__doc__]
max(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
maximum(*args, **kwargs) maximum(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de maximum.__doc__]
may_share_memory
mean(a, axis=None, dtype=None, out=None, keepdims=<no value>, *, where=<no value>)
median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
meshgrid(*xi, copy=True, sparse=False, indexing='xy')
min(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
min_scalar_type
minimum(*args, **kwargs) minimum(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de minimum.__doc__]
mintypecode(typechars, typeset='GDFgdf', default='d')
modf(*args, **kwargs) modf(x[, out1, out2], / [, out=(None, None)], *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de modf.__doc__]
moveaxis(a, source, destination)
multiply(*args, **kwargs) multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de multiply.__doc__]
nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None)
nanargmax(a, axis=None, out=None, *, keepdims=<no value>)
nanargmin(a, axis=None, out=None, *, keepdims=<no value>)
nancumprod(a, axis=None, dtype=None, out=None)
nancumsum(a, axis=None, dtype=None, out=None)
nanmax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
nanmean(a, axis=None, dtype=None, out=None, keepdims=<no value>, *, where=<no value>)
nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=<no value>)
nanmin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
nanpercentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=<no value>, *, weights=None, interpolation=None)
nanprod(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
nanquantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=<no value>, *, weights=None, interpolation=None)
nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>, mean=<no value>, correction=<no value>)
nansum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>, mean=<no value>, correction=<no value>)
ndim(a)
negative(*args, **kwargs) negative(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de negative.__doc__]
nested_iters nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, order="K", casting="safe", buffersize=0) [extrait de nested_iters.__doc__]
nextafter(*args, **kwargs) nextafter(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de nextafter.__doc__]
nonzero(a)
not_equal(*args, **kwargs) not_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de not_equal.__doc__]
ones(shape, dtype=None, order='C')
ones_like(a, dtype=None, order='K', subok=True, shape=None, *, device=None)
outer(a, b, out=None)
packbits
pad(array, pad_width, mode='constant', **kwargs)
partition(a, kth, axis=-1, kind='introselect', order=None)
percentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, weights=None, interpolation=None)
piecewise(x, condlist, funclist, *args, **kw)
place(arr, mask, vals)
poly(seq_of_zeros)
polyadd(a1, a2)
polyder(p, m=1)
polydiv(u, v)
polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
polyint(p, m=1, k=None)
polymul(a1, a2)
polysub(a1, a2)
polyval(p, x)
positive(*args, **kwargs) positive(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de positive.__doc__]
power(*args, **kwargs) power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de power.__doc__]
printoptions(*args, **kwargs) Context manager for setting print options. [extrait de printoptions.__doc__]
prod(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
promote_types promote_types(type1, type2) [extrait de promote_types.__doc__]
ptp(a, axis=None, out=None, keepdims=<no value>)
put(a, ind, v, mode='raise')
put_along_axis(arr, indices, values, axis)
putmask
quantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, weights=None, interpolation=None)
rad2deg(*args, **kwargs) rad2deg(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de rad2deg.__doc__]
radians(*args, **kwargs) radians(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de radians.__doc__]
rand(*args)
randn(*args)
ravel(a, order='C') Return a contiguous flattened array. [extrait de ravel.__doc__]
ravel_multi_index
real(val)
real_if_close(a, tol=100)
reciprocal(*args, **kwargs) reciprocal(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de reciprocal.__doc__]
remainder(*args, **kwargs) remainder(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de remainder.__doc__]
repeat(a, repeats, axis=None)
repmat(a, m, n)
require(a, dtype=None, requirements=None, *, like=None)
reshape(a, /, shape=None, order='C', *, newshape=None, copy=None)
resize(a, new_shape)
result_type
right_shift(*args, **kwargs) right_shift(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de right_shift.__doc__]
rint(*args, **kwargs) rint(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de rint.__doc__]
roll(a, shift, axis=None)
rollaxis(a, axis, start=0)
roots(p)
rot90(m, k=1, axes=(0, 1))
round(a, decimals=0, out=None)
row_stack(tup, *, dtype=None, casting='same_kind')
save(file, arr, allow_pickle=True, fix_imports=<no value>)
savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ', encoding=None)
savez(file, *args, allow_pickle=True, **kwds) Save several arrays into a single file in uncompressed ``.npz`` format. [extrait de savez.__doc__]
savez_compressed(file, *args, allow_pickle=True, **kwds)
searchsorted(a, v, side='left', sorter=None)
select(condlist, choicelist, default=0)
set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None, sign=None, floatmode=None, *, legacy=None, override_repr=None)
setbufsize(size)
setdiff1d(ar1, ar2, assume_unique=False)
seterr(all=None, divide=None, over=None, under=None, invalid=None)
seterrcall(func)
setxor1d(ar1, ar2, assume_unique=False)
shape(a)
shares_memory
show_config(mode='stdout')
show_runtime()
sign(*args, **kwargs) sign(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de sign.__doc__]
signbit(*args, **kwargs) signbit(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de signbit.__doc__]
sin(*args, **kwargs) sin(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de sin.__doc__]
sinc(x)
sinh(*args, **kwargs) sinh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de sinh.__doc__]
size(a, axis=None)
sort(a, axis=-1, kind=None, order=None, *, stable=None)
sort_complex(a)
spacing(*args, **kwargs) spacing(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de spacing.__doc__]
split(ary, indices_or_sections, axis=0)
sqrt(*args, **kwargs) sqrt(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de sqrt.__doc__]
square(*args, **kwargs) square(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de square.__doc__]
squeeze(a, axis=None)
stack(arrays, axis=0, out=None, *, dtype=None, casting='same_kind')
std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>, mean=<no value>, correction=<no value>)
subtract(*args, **kwargs) subtract(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de subtract.__doc__]
sum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
swapaxes(a, axis1, axis2)
take(a, indices, axis=None, out=None, mode='raise')
take_along_axis(arr, indices, axis)
tan(*args, **kwargs) tan(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de tan.__doc__]
tanh(*args, **kwargs) tanh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de tanh.__doc__]
tensordot(a, b, axes=2)
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, durations=-1, tests=None)
tile(A, reps)
trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
transpose(a, axes=None)
trapezoid(y, x=None, dx=1.0, axis=-1)
trapz(y, x=None, dx=1.0, axis=-1)
tri(N, M=None, k=0, dtype=<class 'float'>, *, like=None)
tril(m, k=0)
tril_indices(n, k=0, m=None)
tril_indices_from(arr, k=0)
trim_zeros(filt, trim='fb', axis=None) Remove values along a dimension which are zero along all other. [extrait de trim_zeros.__doc__]
triu(m, k=0)
triu_indices(n, k=0, m=None)
triu_indices_from(arr, k=0)
trunc(*args, **kwargs) trunc(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) [extrait de trunc.__doc__]
typename(char)
union1d(ar1, ar2)
unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *, equal_nan=True)
unique_all(x)
unique_counts(x)
unique_inverse(x)
unique_values(x)
unpackbits
unravel_index
unstack(x, /, *, axis=0)
unwrap(p, discont=None, axis=-1, *, period=6.283185307179586)
vander(x, N=None, increasing=False)
var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>, mean=<no value>, correction=<no value>)
vdot
vecdot(*args, **kwargs) vecdot(x1, x2, /, out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes, axis]) [extrait de vecdot.__doc__]
vecmat(*args, **kwargs) vecmat(x1, x2, /, out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes, axis]) [extrait de vecmat.__doc__]
vsplit(ary, indices_or_sections)
vstack(tup, *, dtype=None, casting='same_kind')
where
zeros(shape, dtype=None, order='C')
zeros_like(a, dtype=None, order='K', subok=True, shape=None, *, device=None)

Liste des variables globales du module numpy.matlib

Nom de la variable globale Valeur
c_ <numpy.lib._index_tricks_impl.CClass object at 0x0000020DE8B3C3C0>
e 2.718281828459045
euler_gamma 0.5772156649015329
False_ False
index_exp <numpy.lib._index_tricks_impl.IndexExpression object at 0x0000020DE8B267D0>
inf inf
little_endian True
mgrid <numpy.lib._index_tricks_impl.MGridClass object at 0x0000020DE8B0FD30>
nan nan
newaxis None
ogrid <numpy.lib._index_tricks_impl.OGridClass object at 0x0000020DE8B26650>
pi 3.141592653589793
r_ <numpy.lib._index_tricks_impl.RClass object at 0x0000020DE8B3C380>
s_ <numpy.lib._index_tricks_impl.IndexExpression object at 0x0000020DE8B26830>
ScalarType (<class 'int'>, <class 'float'>, <class 'complex'>, <class 'bool'>, <class 'bytes'>, <class 'str'>, <class 'memoryview'>, <class 'numpy.bool'>, <class 'numpy.complex64'>, <class 'numpy.complex128'>, <class 'numpy.clongdouble'>, <class 'numpy.float16'>, <class 'numpy.float32'>, <class 'numpy.float64'>, <class 'numpy.longdouble'>, <class 'numpy.int8'>, <class 'numpy.int16'>, <class 'numpy.intc'>, <class 'numpy.int32'>, <class 'numpy.int64'>, <class 'numpy.datetime64'>, <class 'numpy.timedelta64'>, <class 'numpy.object_'>, <class 'numpy.bytes_'>, <class 'numpy.str_'>, <class 'numpy.uint8'>, <class 'numpy.uint16'>, <class 'numpy.uintc'>, <class 'numpy.uint32'>, <class 'numpy.uint64'>, <class 'numpy.void'>)
sctypeDict Contenu de type <class 'dict'>
True_ True
typecodes {'Character': 'c', 'Integer': 'bhilqnp', 'UnsignedInteger': 'BHILQNP', 'Float': 'efdg', 'Complex': 'FDG', 'AllInteger': 'bBhHiIlLqQnNpP', 'AllFloat': 'efdgFDG', 'Datetime': 'Mm', 'All': '?bhilqnpBHILQNPefdgFDGSUVOMm'}

Liste des alias du module numpy.matlib

Nom de l'alias Définition ciblée
abs absolute
acos arccos
acosh arccosh
asin arcsin
asinh arcsinh
atan arctan
atan2 arctan2
atanh arctanh
bitwise_invert invert
bitwise_left_shift left_shift
bitwise_not invert
bitwise_right_shift right_shift
bool_ bool
byte int8
cdouble complex128
concat concatenate
conj conjugate
csingle complex64
double float64
half float16
int_ int64
intp int64
long int32
longlong int64
mod remainder
permute_dims transpose
pow power
short int16
single float32
true_divide divide
ubyte uint8
uint uint64
uintp uint64
ulong uint32
ulonglong uint64
ushort uint16


Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé