Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « numpy.matlib »
Signature de la fonction asanyarray
Description
help(numpy.matlib.asanyarray)
asanyarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)
Convert the input to an ndarray, but pass ndarray subclasses through.
Parameters
----------
a : array_like
Input data, in any form that can be converted to an array. This
includes scalars, lists, lists of tuples, tuples, tuples of tuples,
tuples of lists, and ndarrays.
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {'C', 'F', 'A', 'K'}, optional
Memory layout. 'A' and 'K' depend on the order of input array a.
'C' row-major (C-style),
'F' column-major (Fortran-style) memory representation.
'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
'K' (keep) preserve input order
Defaults to 'C'.
device : str, optional
The device on which to place the created array. Default: ``None``.
For Array-API interoperability only, so must be ``"cpu"`` if passed.
.. versionadded:: 2.1.0
copy : bool, optional
If ``True``, then the object is copied. If ``None`` then the object is
copied only if needed, i.e. if ``__array__`` returns a copy, if obj
is a nested sequence, or if a copy is needed to satisfy any of
the other requirements (``dtype``, ``order``, etc.).
For ``False`` it raises a ``ValueError`` if a copy cannot be avoided.
Default: ``None``.
.. versionadded:: 2.1.0
like : array_like, optional
Reference object to allow the creation of arrays which are not
NumPy arrays. If an array-like passed in as ``like`` supports
the ``__array_function__`` protocol, the result will be defined
by it. In this case, it ensures the creation of an array object
compatible with that passed in via this argument.
.. versionadded:: 1.20.0
Returns
-------
out : ndarray or an ndarray subclass
Array interpretation of `a`. If `a` is an ndarray or a subclass
of ndarray, it is returned as-is and no copy is performed.
See Also
--------
asarray : Similar function which always returns ndarrays.
ascontiguousarray : Convert input to a contiguous array.
asfortranarray : Convert input to an ndarray with column-major
memory order.
asarray_chkfinite : Similar function which checks input for NaNs and
Infs.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
positions.
Examples
--------
Convert a list into an array:
>>> a = [1, 2]
>>> import numpy as np
>>> np.asanyarray(a)
array([1, 2])
Instances of `ndarray` subclasses are passed through as-is:
>>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray)
>>> np.asanyarray(a) is a
True
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :