Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « numpy.matlib »

Fonction in1d - module numpy.matlib

Signature de la fonction in1d

def in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None) 

Description

help(numpy.matlib.in1d)

Test whether each element of a 1-D array is also present in a second array.

.. deprecated:: 2.0
    Use :func:`isin` instead of `in1d` for new code.

Returns a boolean array the same length as `ar1` that is True
where an element of `ar1` is in `ar2` and False otherwise.

Parameters
----------
ar1 : (M,) array_like
    Input array.
ar2 : array_like
    The values against which to test each value of `ar1`.
assume_unique : bool, optional
    If True, the input arrays are both assumed to be unique, which
    can speed up the calculation.  Default is False.
invert : bool, optional
    If True, the values in the returned array are inverted (that is,
    False where an element of `ar1` is in `ar2` and True otherwise).
    Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
    to (but is faster than) ``np.invert(in1d(a, b))``.
kind : {None, 'sort', 'table'}, optional
    The algorithm to use. This will not affect the final result,
    but will affect the speed and memory use. The default, None,
    will select automatically based on memory considerations.

    * If 'sort', will use a mergesort-based approach. This will have
      a memory usage of roughly 6 times the sum of the sizes of
      `ar1` and `ar2`, not accounting for size of dtypes.
    * If 'table', will use a lookup table approach similar
      to a counting sort. This is only available for boolean and
      integer arrays. This will have a memory usage of the
      size of `ar1` plus the max-min value of `ar2`. `assume_unique`
      has no effect when the 'table' option is used.
    * If None, will automatically choose 'table' if
      the required memory allocation is less than or equal to
      6 times the sum of the sizes of `ar1` and `ar2`,
      otherwise will use 'sort'. This is done to not use
      a large amount of memory by default, even though
      'table' may be faster in most cases. If 'table' is chosen,
      `assume_unique` will have no effect.

Returns
-------
in1d : (M,) ndarray, bool
    The values `ar1[in1d]` are in `ar2`.

See Also
--------
isin                  : Version of this function that preserves the
                        shape of ar1.

Notes
-----
`in1d` can be considered as an element-wise function version of the
python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
equivalent to ``np.array([item in b for item in a])``.
However, this idea fails if `ar2` is a set, or similar (non-sequence)
container:  As ``ar2`` is converted to an array, in those cases
``asarray(ar2)`` is an object array rather than the expected array of
contained values.

Using ``kind='table'`` tends to be faster than `kind='sort'` if the
following relationship is true:
``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``,
but may use greater memory. The default value for `kind` will
be automatically selected based only on memory usage, so one may
manually set ``kind='table'`` if memory constraints can be relaxed.

Examples
--------
>>> import numpy as np
>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([ True, False,  True, False,  True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False,  True, False,  True, False])
>>> test[mask]
array([1, 5])


Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé