Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction in1d - module numpy.matlib

Signature de la fonction in1d

def in1d(ar1, ar2, assume_unique=False, invert=False) 

Description

in1d.__doc__

    Test whether each element of a 1-D array is also present in a second array.

    Returns a boolean array the same length as `ar1` that is True
    where an element of `ar1` is in `ar2` and False otherwise.

    We recommend using :func:`isin` instead of `in1d` for new code.

    Parameters
    ----------
    ar1 : (M,) array_like
        Input array.
    ar2 : array_like
        The values against which to test each value of `ar1`.
    assume_unique : bool, optional
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.
    invert : bool, optional
        If True, the values in the returned array are inverted (that is,
        False where an element of `ar1` is in `ar2` and True otherwise).
        Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
        to (but is faster than) ``np.invert(in1d(a, b))``.

        .. versionadded:: 1.8.0

    Returns
    -------
    in1d : (M,) ndarray, bool
        The values `ar1[in1d]` are in `ar2`.

    See Also
    --------
    isin                  : Version of this function that preserves the
                            shape of ar1.
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Notes
    -----
    `in1d` can be considered as an element-wise function version of the
    python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
    equivalent to ``np.array([item in b for item in a])``.
    However, this idea fails if `ar2` is a set, or similar (non-sequence)
    container:  As ``ar2`` is converted to an array, in those cases
    ``asarray(ar2)`` is an object array rather than the expected array of
    contained values.

    .. versionadded:: 1.4.0

    Examples
    --------
    >>> test = np.array([0, 1, 2, 5, 0])
    >>> states = [0, 2]
    >>> mask = np.in1d(test, states)
    >>> mask
    array([ True, False,  True, False,  True])
    >>> test[mask]
    array([0, 2, 0])
    >>> mask = np.in1d(test, states, invert=True)
    >>> mask
    array([False,  True, False,  True, False])
    >>> test[mask]
    array([1, 5])