Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction less_equal - module numpy.matlib

Signature de la fonction less_equal

Description

less_equal.__doc__

less_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Return the truth value of (x1 <= x2) element-wise.

Parameters
----------
x1, x2 : array_like
    Input arrays.
    If ``x1.shape != x2.shape``, they must be broadcastable to a common
    shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
    A location into which the result is stored. If provided, it must have
    a shape that the inputs broadcast to. If not provided or None,
    a freshly-allocated array is returned. A tuple (possible only as a
    keyword argument) must have length equal to the number of outputs.
where : array_like, optional
    This condition is broadcast over the input. At locations where the
    condition is True, the `out` array will be set to the ufunc result.
    Elsewhere, the `out` array will retain its original value.
    Note that if an uninitialized `out` array is created via the default
    ``out=None``, locations within it where the condition is False will
    remain uninitialized.
**kwargs
    For other keyword-only arguments, see the
    :ref:`ufunc docs <ufuncs.kwargs>`.

Returns
-------
out : ndarray or scalar
    Output array, element-wise comparison of `x1` and `x2`.
    Typically of type bool, unless ``dtype=object`` is passed.
    This is a scalar if both `x1` and `x2` are scalars.

See Also
--------
greater, less, greater_equal, equal, not_equal

Examples
--------
>>> np.less_equal([4, 2, 1], [2, 2, 2])
array([False,  True,  True])

The ``<=`` operator can be used as a shorthand for ``np.less_equal`` on
ndarrays.

>>> a = np.array([4, 2, 1])
>>> b = np.array([2, 2, 2])
>>> a <= b
array([False,  True,  True])