Module « numpy.matlib »
Signature de la fonction quantile
def quantile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)
Description
quantile.__doc__
Compute the q-th quantile of the data along the specified axis.
.. versionadded:: 1.15.0
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
q : array_like of float
Quantile or sequence of quantiles to compute, which must be between
0 and 1 inclusive.
axis : {int, tuple of int, None}, optional
Axis or axes along which the quantiles are computed. The
default is to compute the quantile(s) along a flattened
version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow the input array `a` to be modified by intermediate
calculations, to save memory. In this case, the contents of the input
`a` after this function completes is undefined.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
This optional parameter specifies the interpolation method to
use when the desired quantile lies between two data points
``i < j``:
* linear: ``i + (j - i) * fraction``, where ``fraction``
is the fractional part of the index surrounded by ``i``
and ``j``.
* lower: ``i``.
* higher: ``j``.
* nearest: ``i`` or ``j``, whichever is nearest.
* midpoint: ``(i + j) / 2``.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option, the
result will broadcast correctly against the original array `a`.
Returns
-------
quantile : scalar or ndarray
If `q` is a single quantile and `axis=None`, then the result
is a scalar. If multiple quantiles are given, first axis of
the result corresponds to the quantiles. The other axes are
the axes that remain after the reduction of `a`. If the input
contains integers or floats smaller than ``float64``, the output
data-type is ``float64``. Otherwise, the output data-type is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
mean
percentile : equivalent to quantile, but with q in the range [0, 100].
median : equivalent to ``quantile(..., 0.5)``
nanquantile
Notes
-----
Given a vector ``V`` of length ``N``, the q-th quantile of
``V`` is the value ``q`` of the way from the minimum to the
maximum in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
will determine the quantile if the normalized ranking does not
match the location of ``q`` exactly. This function is the same as
the median if ``q=0.5``, the same as the minimum if ``q=0.0`` and the
same as the maximum if ``q=1.0``.
Examples
--------
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.quantile(a, 0.5)
3.5
>>> np.quantile(a, 0.5, axis=0)
array([6.5, 4.5, 2.5])
>>> np.quantile(a, 0.5, axis=1)
array([7., 2.])
>>> np.quantile(a, 0.5, axis=1, keepdims=True)
array([[7.],
[2.]])
>>> m = np.quantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.quantile(a, 0.5, axis=0, out=out)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.quantile(b, 0.5, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a == b)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :