Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction percentile - module numpy.matlib

Signature de la fonction percentile

def percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False) 

Description

percentile.__doc__

    Compute the q-th percentile of the data along the specified axis.

    Returns the q-th percentile(s) of the array elements.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    q : array_like of float
        Percentile or sequence of percentiles to compute, which must be between
        0 and 100 inclusive.
    axis : {int, tuple of int, None}, optional
        Axis or axes along which the percentiles are computed. The
        default is to compute the percentile(s) along a flattened
        version of the array.

        .. versionchanged:: 1.9.0
            A tuple of axes is supported
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool, optional
        If True, then allow the input array `a` to be modified by intermediate
        calculations, to save memory. In this case, the contents of the input
        `a` after this function completes is undefined.

    interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
        This optional parameter specifies the interpolation method to
        use when the desired percentile lies between two data points
        ``i < j``:

        * 'linear': ``i + (j - i) * fraction``, where ``fraction``
          is the fractional part of the index surrounded by ``i``
          and ``j``.
        * 'lower': ``i``.
        * 'higher': ``j``.
        * 'nearest': ``i`` or ``j``, whichever is nearest.
        * 'midpoint': ``(i + j) / 2``.

        .. versionadded:: 1.9.0
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left in
        the result as dimensions with size one. With this option, the
        result will broadcast correctly against the original array `a`.

        .. versionadded:: 1.9.0

    Returns
    -------
    percentile : scalar or ndarray
        If `q` is a single percentile and `axis=None`, then the result
        is a scalar. If multiple percentiles are given, first axis of
        the result corresponds to the percentiles. The other axes are
        the axes that remain after the reduction of `a`. If the input
        contains integers or floats smaller than ``float64``, the output
        data-type is ``float64``. Otherwise, the output data-type is the
        same as that of the input. If `out` is specified, that array is
        returned instead.

    See Also
    --------
    mean
    median : equivalent to ``percentile(..., 50)``
    nanpercentile
    quantile : equivalent to percentile, except with q in the range [0, 1].

    Notes
    -----
    Given a vector ``V`` of length ``N``, the q-th percentile of
    ``V`` is the value ``q/100`` of the way from the minimum to the
    maximum in a sorted copy of ``V``. The values and distances of
    the two nearest neighbors as well as the `interpolation` parameter
    will determine the percentile if the normalized ranking does not
    match the location of ``q`` exactly. This function is the same as
    the median if ``q=50``, the same as the minimum if ``q=0`` and the
    same as the maximum if ``q=100``.

    Examples
    --------
    >>> a = np.array([[10, 7, 4], [3, 2, 1]])
    >>> a
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> np.percentile(a, 50)
    3.5
    >>> np.percentile(a, 50, axis=0)
    array([6.5, 4.5, 2.5])
    >>> np.percentile(a, 50, axis=1)
    array([7.,  2.])
    >>> np.percentile(a, 50, axis=1, keepdims=True)
    array([[7.],
           [2.]])

    >>> m = np.percentile(a, 50, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.percentile(a, 50, axis=0, out=out)
    array([6.5, 4.5, 2.5])
    >>> m
    array([6.5, 4.5, 2.5])

    >>> b = a.copy()
    >>> np.percentile(b, 50, axis=1, overwrite_input=True)
    array([7.,  2.])
    >>> assert not np.all(a == b)

    The different types of interpolation can be visualized graphically:

    .. plot::

        import matplotlib.pyplot as plt

        a = np.arange(4)
        p = np.linspace(0, 100, 6001)
        ax = plt.gca()
        lines = [
            ('linear', None),
            ('higher', '--'),
            ('lower', '--'),
            ('nearest', '-.'),
            ('midpoint', '-.'),
        ]
        for interpolation, style in lines:
            ax.plot(
                p, np.percentile(a, p, interpolation=interpolation),
                label=interpolation, linestyle=style)
        ax.set(
            title='Interpolation methods for list: ' + str(a),
            xlabel='Percentile',
            ylabel='List item returned',
            yticks=a)
        ax.legend()
        plt.show()