Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction fabs - module numpy.matlib

Signature de la fonction fabs

Description

fabs.__doc__

fabs(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Compute the absolute values element-wise.

This function returns the absolute values (positive magnitude) of the
data in `x`. Complex values are not handled, use `absolute` to find the
absolute values of complex data.

Parameters
----------
x : array_like
    The array of numbers for which the absolute values are required. If
    `x` is a scalar, the result `y` will also be a scalar.
out : ndarray, None, or tuple of ndarray and None, optional
    A location into which the result is stored. If provided, it must have
    a shape that the inputs broadcast to. If not provided or None,
    a freshly-allocated array is returned. A tuple (possible only as a
    keyword argument) must have length equal to the number of outputs.
where : array_like, optional
    This condition is broadcast over the input. At locations where the
    condition is True, the `out` array will be set to the ufunc result.
    Elsewhere, the `out` array will retain its original value.
    Note that if an uninitialized `out` array is created via the default
    ``out=None``, locations within it where the condition is False will
    remain uninitialized.
**kwargs
    For other keyword-only arguments, see the
    :ref:`ufunc docs <ufuncs.kwargs>`.

Returns
-------
y : ndarray or scalar
    The absolute values of `x`, the returned values are always floats.
    This is a scalar if `x` is a scalar.

See Also
--------
absolute : Absolute values including `complex` types.

Examples
--------
>>> np.fabs(-1)
1.0
>>> np.fabs([-1.2, 1.2])
array([ 1.2,  1.2])