Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Classe « nditer »

Informations générales

Héritage

builtins.object
    nditer

Définition

class nditer(builtins.object):

Description [extrait de nditer.__doc__]

nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', op_axes=None, itershape=None, buffersize=0)

    Efficient multi-dimensional iterator object to iterate over arrays.
    To get started using this object, see the
    :ref:`introductory guide to array iteration <arrays.nditer>`.

    Parameters
    ----------
    op : ndarray or sequence of array_like
        The array(s) to iterate over.

    flags : sequence of str, optional
          Flags to control the behavior of the iterator.

          * ``buffered`` enables buffering when required.
          * ``c_index`` causes a C-order index to be tracked.
          * ``f_index`` causes a Fortran-order index to be tracked.
          * ``multi_index`` causes a multi-index, or a tuple of indices
            with one per iteration dimension, to be tracked.
          * ``common_dtype`` causes all the operands to be converted to
            a common data type, with copying or buffering as necessary.
          * ``copy_if_overlap`` causes the iterator to determine if read
            operands have overlap with write operands, and make temporary
            copies as necessary to avoid overlap. False positives (needless
            copying) are possible in some cases.
          * ``delay_bufalloc`` delays allocation of the buffers until
            a reset() call is made. Allows ``allocate`` operands to
            be initialized before their values are copied into the buffers.
          * ``external_loop`` causes the ``values`` given to be
            one-dimensional arrays with multiple values instead of
            zero-dimensional arrays.
          * ``grow_inner`` allows the ``value`` array sizes to be made
            larger than the buffer size when both ``buffered`` and
            ``external_loop`` is used.
          * ``ranged`` allows the iterator to be restricted to a sub-range
            of the iterindex values.
          * ``refs_ok`` enables iteration of reference types, such as
            object arrays.
          * ``reduce_ok`` enables iteration of ``readwrite`` operands
            which are broadcasted, also known as reduction operands.
          * ``zerosize_ok`` allows `itersize` to be zero.
    op_flags : list of list of str, optional
          This is a list of flags for each operand. At minimum, one of
          ``readonly``, ``readwrite``, or ``writeonly`` must be specified.

          * ``readonly`` indicates the operand will only be read from.
          * ``readwrite`` indicates the operand will be read from and written to.
          * ``writeonly`` indicates the operand will only be written to.
          * ``no_broadcast`` prevents the operand from being broadcasted.
          * ``contig`` forces the operand data to be contiguous.
          * ``aligned`` forces the operand data to be aligned.
          * ``nbo`` forces the operand data to be in native byte order.
          * ``copy`` allows a temporary read-only copy if required.
          * ``updateifcopy`` allows a temporary read-write copy if required.
          * ``allocate`` causes the array to be allocated if it is None
            in the ``op`` parameter.
          * ``no_subtype`` prevents an ``allocate`` operand from using a subtype.
          * ``arraymask`` indicates that this operand is the mask to use
            for selecting elements when writing to operands with the
            'writemasked' flag set. The iterator does not enforce this,
            but when writing from a buffer back to the array, it only
            copies those elements indicated by this mask.
          * ``writemasked`` indicates that only elements where the chosen
            ``arraymask`` operand is True will be written to.
          * ``overlap_assume_elementwise`` can be used to mark operands that are
            accessed only in the iterator order, to allow less conservative
            copying when ``copy_if_overlap`` is present.
    op_dtypes : dtype or tuple of dtype(s), optional
        The required data type(s) of the operands. If copying or buffering
        is enabled, the data will be converted to/from their original types.
    order : {'C', 'F', 'A', 'K'}, optional
        Controls the iteration order. 'C' means C order, 'F' means
        Fortran order, 'A' means 'F' order if all the arrays are Fortran
        contiguous, 'C' order otherwise, and 'K' means as close to the
        order the array elements appear in memory as possible. This also
        affects the element memory order of ``allocate`` operands, as they
        are allocated to be compatible with iteration order.
        Default is 'K'.
    casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
        Controls what kind of data casting may occur when making a copy
        or buffering.  Setting this to 'unsafe' is not recommended,
        as it can adversely affect accumulations.

        * 'no' means the data types should not be cast at all.
        * 'equiv' means only byte-order changes are allowed.
        * 'safe' means only casts which can preserve values are allowed.
        * 'same_kind' means only safe casts or casts within a kind,
          like float64 to float32, are allowed.
        * 'unsafe' means any data conversions may be done.
    op_axes : list of list of ints, optional
        If provided, is a list of ints or None for each operands.
        The list of axes for an operand is a mapping from the dimensions
        of the iterator to the dimensions of the operand. A value of
        -1 can be placed for entries, causing that dimension to be
        treated as `newaxis`.
    itershape : tuple of ints, optional
        The desired shape of the iterator. This allows ``allocate`` operands
        with a dimension mapped by op_axes not corresponding to a dimension
        of a different operand to get a value not equal to 1 for that
        dimension.
    buffersize : int, optional
        When buffering is enabled, controls the size of the temporary
        buffers. Set to 0 for the default value.

    Attributes
    ----------
    dtypes : tuple of dtype(s)
        The data types of the values provided in `value`. This may be
        different from the operand data types if buffering is enabled.
        Valid only before the iterator is closed.
    finished : bool
        Whether the iteration over the operands is finished or not.
    has_delayed_bufalloc : bool
        If True, the iterator was created with the ``delay_bufalloc`` flag,
        and no reset() function was called on it yet.
    has_index : bool
        If True, the iterator was created with either the ``c_index`` or
        the ``f_index`` flag, and the property `index` can be used to
        retrieve it.
    has_multi_index : bool
        If True, the iterator was created with the ``multi_index`` flag,
        and the property `multi_index` can be used to retrieve it.
    index
        When the ``c_index`` or ``f_index`` flag was used, this property
        provides access to the index. Raises a ValueError if accessed
        and ``has_index`` is False.
    iterationneedsapi : bool
        Whether iteration requires access to the Python API, for example
        if one of the operands is an object array.
    iterindex : int
        An index which matches the order of iteration.
    itersize : int
        Size of the iterator.
    itviews
        Structured view(s) of `operands` in memory, matching the reordered
        and optimized iterator access pattern. Valid only before the iterator
        is closed.
    multi_index
        When the ``multi_index`` flag was used, this property
        provides access to the index. Raises a ValueError if accessed
        accessed and ``has_multi_index`` is False.
    ndim : int
        The dimensions of the iterator.
    nop : int
        The number of iterator operands.
    operands : tuple of operand(s)
        The array(s) to be iterated over. Valid only before the iterator is
        closed.
    shape : tuple of ints
        Shape tuple, the shape of the iterator.
    value
        Value of ``operands`` at current iteration. Normally, this is a
        tuple of array scalars, but if the flag ``external_loop`` is used,
        it is a tuple of one dimensional arrays.

    Notes
    -----
    `nditer` supersedes `flatiter`.  The iterator implementation behind
    `nditer` is also exposed by the NumPy C API.

    The Python exposure supplies two iteration interfaces, one which follows
    the Python iterator protocol, and another which mirrors the C-style
    do-while pattern.  The native Python approach is better in most cases, but
    if you need the coordinates or index of an iterator, use the C-style pattern.

    Examples
    --------
    Here is how we might write an ``iter_add`` function, using the
    Python iterator protocol:

    >>> def iter_add_py(x, y, out=None):
    ...     addop = np.add
    ...     it = np.nditer([x, y, out], [],
    ...                 [['readonly'], ['readonly'], ['writeonly','allocate']])
    ...     with it:
    ...         for (a, b, c) in it:
    ...             addop(a, b, out=c)
    ...     return it.operands[2]

    Here is the same function, but following the C-style pattern:

    >>> def iter_add(x, y, out=None):
    ...    addop = np.add
    ...    it = np.nditer([x, y, out], [],
    ...                [['readonly'], ['readonly'], ['writeonly','allocate']])
    ...    with it:
    ...        while not it.finished:
    ...            addop(it[0], it[1], out=it[2])
    ...            it.iternext()
    ...        return it.operands[2]

    Here is an example outer product function:

    >>> def outer_it(x, y, out=None):
    ...     mulop = np.multiply
    ...     it = np.nditer([x, y, out], ['external_loop'],
    ...             [['readonly'], ['readonly'], ['writeonly', 'allocate']],
    ...             op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
    ...                      [-1] * x.ndim + list(range(y.ndim)),
    ...                      None])
    ...     with it:
    ...         for (a, b, c) in it:
    ...             mulop(a, b, out=c)
    ...         return it.operands[2]

    >>> a = np.arange(2)+1
    >>> b = np.arange(3)+1
    >>> outer_it(a,b)
    array([[1, 2, 3],
           [2, 4, 6]])

    Here is an example function which operates like a "lambda" ufunc:

    >>> def luf(lamdaexpr, *args, **kwargs):
    ...    '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
    ...    nargs = len(args)
    ...    op = (kwargs.get('out',None),) + args
    ...    it = np.nditer(op, ['buffered','external_loop'],
    ...            [['writeonly','allocate','no_broadcast']] +
    ...                            [['readonly','nbo','aligned']]*nargs,
    ...            order=kwargs.get('order','K'),
    ...            casting=kwargs.get('casting','safe'),
    ...            buffersize=kwargs.get('buffersize',0))
    ...    while not it.finished:
    ...        it[0] = lamdaexpr(*it[1:])
    ...        it.iternext()
    ...        return it.operands[0]

    >>> a = np.arange(5)
    >>> b = np.ones(5)
    >>> luf(lambda i,j:i*i + j/2, a, b)
    array([  0.5,   1.5,   4.5,   9.5,  16.5])

    If operand flags `"writeonly"` or `"readwrite"` are used the
    operands may be views into the original data with the
    `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a
    context manager or the `nditer.close` method must be called before
    using the result. The temporary data will be written back to the
    original data when the `__exit__` function is called but not before:

    >>> a = np.arange(6, dtype='i4')[::-2]
    >>> with np.nditer(a, [],
    ...        [['writeonly', 'updateifcopy']],
    ...        casting='unsafe',
    ...        op_dtypes=[np.dtype('f4')]) as i:
    ...    x = i.operands[0]
    ...    x[:] = [-1, -2, -3]
    ...    # a still unchanged here
    >>> a, x
    (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))

    It is important to note that once the iterator is exited, dangling
    references (like `x` in the example) may or may not share data with
    the original data `a`. If writeback semantics were active, i.e. if
    `x.base.flags.writebackifcopy` is `True`, then exiting the iterator
    will sever the connection between `x` and `a`, writing to `x` will
    no longer write to `a`. If writeback semantics are not active, then
    `x.data` will still point at some part of `a.data`, and writing to
    one will affect the other.

    Context management and the `close` method appeared in version 1.15.0.

Constructeur(s)

Signature du constructeur Description
__new__(*args, **kwargs) Create and return a new object. See help(type) for accurate signature. [extrait de __new__.__doc__]
__init__(self, /, *args, **kwargs) Initialize self. See help(type(self)) for accurate signature. [extrait de __init__.__doc__]

Liste des attributs statiques

Nom de l'attribut Valeur
dtypes<attribute 'dtypes' of 'numpy.nditer' objects>
finished<attribute 'finished' of 'numpy.nditer' objects>
has_delayed_bufalloc<attribute 'has_delayed_bufalloc' of 'numpy.nditer' objects>
has_index<attribute 'has_index' of 'numpy.nditer' objects>
has_multi_index<attribute 'has_multi_index' of 'numpy.nditer' objects>
index<attribute 'index' of 'numpy.nditer' objects>
iterationneedsapi<attribute 'iterationneedsapi' of 'numpy.nditer' objects>
iterindex<attribute 'iterindex' of 'numpy.nditer' objects>
iterrange<attribute 'iterrange' of 'numpy.nditer' objects>
itersize<attribute 'itersize' of 'numpy.nditer' objects>
itviews<attribute 'itviews' of 'numpy.nditer' objects>
multi_index<attribute 'multi_index' of 'numpy.nditer' objects>
ndim<attribute 'ndim' of 'numpy.nditer' objects>
nop<attribute 'nop' of 'numpy.nditer' objects>
operands<attribute 'operands' of 'numpy.nditer' objects>
shape<attribute 'shape' of 'numpy.nditer' objects>
value<attribute 'value' of 'numpy.nditer' objects>

Liste des opérateurs

Signature de l'opérateur Description
__delitem__(self, key) Delete self[key]. [extrait de __delitem__.__doc__]
__getitem__(self, key) Return self[key]. [extrait de __getitem__.__doc__]
__setitem__(self, key, value) Set self[key] to value. [extrait de __setitem__.__doc__]

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__copy__
__enter__
__exit__
__iter__(self) Implement iter(self). [extrait de __iter__.__doc__]
__len__(self) Return len(self). [extrait de __len__.__doc__]
__next__(self) Implement next(self). [extrait de __next__.__doc__]
close close() [extrait de close.__doc__]
copy copy() [extrait de copy.__doc__]
debug_print debug_print() [extrait de debug_print.__doc__]
enable_external_loop enable_external_loop() [extrait de enable_external_loop.__doc__]
iternext iternext() [extrait de iternext.__doc__]
remove_axis remove_axis(i) [extrait de remove_axis.__doc__]
remove_multi_index remove_multi_index() [extrait de remove_multi_index.__doc__]
reset reset() [extrait de reset.__doc__]

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __hash__, __init_subclass__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__