Module « numpy.matlib »
Classe « nditer »
Informations générales
Héritage
builtins.object
nditer
Définition
class nditer(builtins.object):
Description [extrait de nditer.__doc__]
nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', op_axes=None, itershape=None, buffersize=0)
Efficient multi-dimensional iterator object to iterate over arrays.
To get started using this object, see the
:ref:`introductory guide to array iteration <arrays.nditer>`.
Parameters
----------
op : ndarray or sequence of array_like
The array(s) to iterate over.
flags : sequence of str, optional
Flags to control the behavior of the iterator.
* ``buffered`` enables buffering when required.
* ``c_index`` causes a C-order index to be tracked.
* ``f_index`` causes a Fortran-order index to be tracked.
* ``multi_index`` causes a multi-index, or a tuple of indices
with one per iteration dimension, to be tracked.
* ``common_dtype`` causes all the operands to be converted to
a common data type, with copying or buffering as necessary.
* ``copy_if_overlap`` causes the iterator to determine if read
operands have overlap with write operands, and make temporary
copies as necessary to avoid overlap. False positives (needless
copying) are possible in some cases.
* ``delay_bufalloc`` delays allocation of the buffers until
a reset() call is made. Allows ``allocate`` operands to
be initialized before their values are copied into the buffers.
* ``external_loop`` causes the ``values`` given to be
one-dimensional arrays with multiple values instead of
zero-dimensional arrays.
* ``grow_inner`` allows the ``value`` array sizes to be made
larger than the buffer size when both ``buffered`` and
``external_loop`` is used.
* ``ranged`` allows the iterator to be restricted to a sub-range
of the iterindex values.
* ``refs_ok`` enables iteration of reference types, such as
object arrays.
* ``reduce_ok`` enables iteration of ``readwrite`` operands
which are broadcasted, also known as reduction operands.
* ``zerosize_ok`` allows `itersize` to be zero.
op_flags : list of list of str, optional
This is a list of flags for each operand. At minimum, one of
``readonly``, ``readwrite``, or ``writeonly`` must be specified.
* ``readonly`` indicates the operand will only be read from.
* ``readwrite`` indicates the operand will be read from and written to.
* ``writeonly`` indicates the operand will only be written to.
* ``no_broadcast`` prevents the operand from being broadcasted.
* ``contig`` forces the operand data to be contiguous.
* ``aligned`` forces the operand data to be aligned.
* ``nbo`` forces the operand data to be in native byte order.
* ``copy`` allows a temporary read-only copy if required.
* ``updateifcopy`` allows a temporary read-write copy if required.
* ``allocate`` causes the array to be allocated if it is None
in the ``op`` parameter.
* ``no_subtype`` prevents an ``allocate`` operand from using a subtype.
* ``arraymask`` indicates that this operand is the mask to use
for selecting elements when writing to operands with the
'writemasked' flag set. The iterator does not enforce this,
but when writing from a buffer back to the array, it only
copies those elements indicated by this mask.
* ``writemasked`` indicates that only elements where the chosen
``arraymask`` operand is True will be written to.
* ``overlap_assume_elementwise`` can be used to mark operands that are
accessed only in the iterator order, to allow less conservative
copying when ``copy_if_overlap`` is present.
op_dtypes : dtype or tuple of dtype(s), optional
The required data type(s) of the operands. If copying or buffering
is enabled, the data will be converted to/from their original types.
order : {'C', 'F', 'A', 'K'}, optional
Controls the iteration order. 'C' means C order, 'F' means
Fortran order, 'A' means 'F' order if all the arrays are Fortran
contiguous, 'C' order otherwise, and 'K' means as close to the
order the array elements appear in memory as possible. This also
affects the element memory order of ``allocate`` operands, as they
are allocated to be compatible with iteration order.
Default is 'K'.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur when making a copy
or buffering. Setting this to 'unsafe' is not recommended,
as it can adversely affect accumulations.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
op_axes : list of list of ints, optional
If provided, is a list of ints or None for each operands.
The list of axes for an operand is a mapping from the dimensions
of the iterator to the dimensions of the operand. A value of
-1 can be placed for entries, causing that dimension to be
treated as `newaxis`.
itershape : tuple of ints, optional
The desired shape of the iterator. This allows ``allocate`` operands
with a dimension mapped by op_axes not corresponding to a dimension
of a different operand to get a value not equal to 1 for that
dimension.
buffersize : int, optional
When buffering is enabled, controls the size of the temporary
buffers. Set to 0 for the default value.
Attributes
----------
dtypes : tuple of dtype(s)
The data types of the values provided in `value`. This may be
different from the operand data types if buffering is enabled.
Valid only before the iterator is closed.
finished : bool
Whether the iteration over the operands is finished or not.
has_delayed_bufalloc : bool
If True, the iterator was created with the ``delay_bufalloc`` flag,
and no reset() function was called on it yet.
has_index : bool
If True, the iterator was created with either the ``c_index`` or
the ``f_index`` flag, and the property `index` can be used to
retrieve it.
has_multi_index : bool
If True, the iterator was created with the ``multi_index`` flag,
and the property `multi_index` can be used to retrieve it.
index
When the ``c_index`` or ``f_index`` flag was used, this property
provides access to the index. Raises a ValueError if accessed
and ``has_index`` is False.
iterationneedsapi : bool
Whether iteration requires access to the Python API, for example
if one of the operands is an object array.
iterindex : int
An index which matches the order of iteration.
itersize : int
Size of the iterator.
itviews
Structured view(s) of `operands` in memory, matching the reordered
and optimized iterator access pattern. Valid only before the iterator
is closed.
multi_index
When the ``multi_index`` flag was used, this property
provides access to the index. Raises a ValueError if accessed
accessed and ``has_multi_index`` is False.
ndim : int
The dimensions of the iterator.
nop : int
The number of iterator operands.
operands : tuple of operand(s)
The array(s) to be iterated over. Valid only before the iterator is
closed.
shape : tuple of ints
Shape tuple, the shape of the iterator.
value
Value of ``operands`` at current iteration. Normally, this is a
tuple of array scalars, but if the flag ``external_loop`` is used,
it is a tuple of one dimensional arrays.
Notes
-----
`nditer` supersedes `flatiter`. The iterator implementation behind
`nditer` is also exposed by the NumPy C API.
The Python exposure supplies two iteration interfaces, one which follows
the Python iterator protocol, and another which mirrors the C-style
do-while pattern. The native Python approach is better in most cases, but
if you need the coordinates or index of an iterator, use the C-style pattern.
Examples
--------
Here is how we might write an ``iter_add`` function, using the
Python iterator protocol:
>>> def iter_add_py(x, y, out=None):
... addop = np.add
... it = np.nditer([x, y, out], [],
... [['readonly'], ['readonly'], ['writeonly','allocate']])
... with it:
... for (a, b, c) in it:
... addop(a, b, out=c)
... return it.operands[2]
Here is the same function, but following the C-style pattern:
>>> def iter_add(x, y, out=None):
... addop = np.add
... it = np.nditer([x, y, out], [],
... [['readonly'], ['readonly'], ['writeonly','allocate']])
... with it:
... while not it.finished:
... addop(it[0], it[1], out=it[2])
... it.iternext()
... return it.operands[2]
Here is an example outer product function:
>>> def outer_it(x, y, out=None):
... mulop = np.multiply
... it = np.nditer([x, y, out], ['external_loop'],
... [['readonly'], ['readonly'], ['writeonly', 'allocate']],
... op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
... [-1] * x.ndim + list(range(y.ndim)),
... None])
... with it:
... for (a, b, c) in it:
... mulop(a, b, out=c)
... return it.operands[2]
>>> a = np.arange(2)+1
>>> b = np.arange(3)+1
>>> outer_it(a,b)
array([[1, 2, 3],
[2, 4, 6]])
Here is an example function which operates like a "lambda" ufunc:
>>> def luf(lamdaexpr, *args, **kwargs):
... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
... nargs = len(args)
... op = (kwargs.get('out',None),) + args
... it = np.nditer(op, ['buffered','external_loop'],
... [['writeonly','allocate','no_broadcast']] +
... [['readonly','nbo','aligned']]*nargs,
... order=kwargs.get('order','K'),
... casting=kwargs.get('casting','safe'),
... buffersize=kwargs.get('buffersize',0))
... while not it.finished:
... it[0] = lamdaexpr(*it[1:])
... it.iternext()
... return it.operands[0]
>>> a = np.arange(5)
>>> b = np.ones(5)
>>> luf(lambda i,j:i*i + j/2, a, b)
array([ 0.5, 1.5, 4.5, 9.5, 16.5])
If operand flags `"writeonly"` or `"readwrite"` are used the
operands may be views into the original data with the
`WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a
context manager or the `nditer.close` method must be called before
using the result. The temporary data will be written back to the
original data when the `__exit__` function is called but not before:
>>> a = np.arange(6, dtype='i4')[::-2]
>>> with np.nditer(a, [],
... [['writeonly', 'updateifcopy']],
... casting='unsafe',
... op_dtypes=[np.dtype('f4')]) as i:
... x = i.operands[0]
... x[:] = [-1, -2, -3]
... # a still unchanged here
>>> a, x
(array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))
It is important to note that once the iterator is exited, dangling
references (like `x` in the example) may or may not share data with
the original data `a`. If writeback semantics were active, i.e. if
`x.base.flags.writebackifcopy` is `True`, then exiting the iterator
will sever the connection between `x` and `a`, writing to `x` will
no longer write to `a`. If writeback semantics are not active, then
`x.data` will still point at some part of `a.data`, and writing to
one will affect the other.
Context management and the `close` method appeared in version 1.15.0.
Constructeur(s)
Liste des attributs statiques
dtypes | <attribute 'dtypes' of 'numpy.nditer' objects> |
finished | <attribute 'finished' of 'numpy.nditer' objects> |
has_delayed_bufalloc | <attribute 'has_delayed_bufalloc' of 'numpy.nditer' objects> |
has_index | <attribute 'has_index' of 'numpy.nditer' objects> |
has_multi_index | <attribute 'has_multi_index' of 'numpy.nditer' objects> |
index | <attribute 'index' of 'numpy.nditer' objects> |
iterationneedsapi | <attribute 'iterationneedsapi' of 'numpy.nditer' objects> |
iterindex | <attribute 'iterindex' of 'numpy.nditer' objects> |
iterrange | <attribute 'iterrange' of 'numpy.nditer' objects> |
itersize | <attribute 'itersize' of 'numpy.nditer' objects> |
itviews | <attribute 'itviews' of 'numpy.nditer' objects> |
multi_index | <attribute 'multi_index' of 'numpy.nditer' objects> |
ndim | <attribute 'ndim' of 'numpy.nditer' objects> |
nop | <attribute 'nop' of 'numpy.nditer' objects> |
operands | <attribute 'operands' of 'numpy.nditer' objects> |
shape | <attribute 'shape' of 'numpy.nditer' objects> |
value | <attribute 'value' of 'numpy.nditer' objects> |
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__init_subclass__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__,
__subclasshook__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :