Module « numpy.matlib »
Signature de la fonction fmax
Description
fmax.__doc__
fmax(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise
maxima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.
Parameters
----------
x1, x2 : array_like
The arrays holding the elements to be compared.
If ``x1.shape != x2.shape``, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
y : ndarray or scalar
The maximum of `x1` and `x2`, element-wise.
This is a scalar if both `x1` and `x2` are scalars.
See Also
--------
fmin :
Element-wise minimum of two arrays, ignores NaNs.
maximum :
Element-wise maximum of two arrays, propagates NaNs.
amax :
The maximum value of an array along a given axis, propagates NaNs.
nanmax :
The maximum value of an array along a given axis, ignores NaNs.
minimum, amin, nanmin
Notes
-----
.. versionadded:: 1.3.0
The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.
Examples
--------
>>> np.fmax([2, 3, 4], [1, 5, 2])
array([ 2., 5., 4.])
>>> np.fmax(np.eye(2), [0.5, 2])
array([[ 1. , 2. ],
[ 0.5, 2. ]])
>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([ 0., 0., nan])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :